We recently developed a combination of four chemiluminescence-based assays for selective detection of different nitric oxide (NO) metabolites, including nitrite, S-nitrosothiols (SNOs), heme-nitrosyl (heme-NO), and dinitrosyl iron complexes (DNICs). However, these NO species (NOx) may be under dynamic equilibria during sample handling, which affects the final determination made from the readout of assays. Using fetal and maternal sheep from low and high altitudes (300 and 3801 m, respectively) as models of different NOx levels and compositions, we tested the hypothesis that sample handling introduces artifacts in chemiluminescence assays of NOx.
View Article and Find Full Text PDFThe mammalian fetus thrives at oxygen tensions much lower than those of adults. Gestation at high altitude superimposes hypoxic stresses on the fetus resulting in increased erythropoiesis. We hypothesized that chronic hypoxia at high altitude alters the homeostasis of iron and bioactive nitric oxide metabolites (NOx) in gestation.
View Article and Find Full Text PDFS-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2020
Circulating metabolites of nitric oxide, such as nitrite, iron nitrosyls (FeNO), and nitrosothiols, have vasodilatory bioactivity. In both human and sheep neonates, plasma concentrations of these NO metabolite (NOx) concentrations fall >50% within minutes after birth, raising the possibility that circulating NOx plays a role in maintaining low fetal vascular resistance and in the cardiovascular transition at birth. To test whether the fall in plasma NOx concentrations at birth is due to either ligation of the umbilical cord or oxygenation of the fetus to newborn levels, plasma NOx concentrations were measured during stepwise delivery of near-term fetal lambs.
View Article and Find Full Text PDFKey Points: Nitric oxide (NO) is a gasotransmitter with important physiological and pathophysiological roles in pregnancy. There is limited information available about the sources and metabolism of NO and its bioactive metabolites (NOx) in both normal and complicated pregnancies. The present study characterized and quantified endogenous NOx in human and mouse placenta following determination of the stability of exogenous NOx in placental homogenates.
View Article and Find Full Text PDFL-N-Nitro arginine methyl ester (L-NAME) has been widely applied for several decades in both basic and clinical research as an antagonist of nitric oxide synthase (NOS). Herein, we show that L-NAME slowly releases NO from its guanidino nitro group. Daily pretreatment of rats with L-NAME potentiated mesenteric vasodilation induced by nitrodilators such as nitroglycerin, but not by NO.
View Article and Find Full Text PDFDinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol Ther
September 2018
Introduction: Pulmonary hypertension (PH) is a potentially deadly disease for infants and adults with few existing medical interventions and no cure. In PH, increased blood pressure in the pulmonary artery eventually leads to heart failure. Fasudil, an antagonist of Rho-kinase, causes vasodilation leading to decreased systemic artery pressure and pulmonary artery pressure (PAP).
View Article and Find Full Text PDFGlutathione-liganded binuclear dinitrosyl iron complex (glut-BDNIC) has been proposed to be a donor of nitric oxide (NO). This study was undertaken to investigate the mechanisms of vasoactivity, systemic hemodynamic effects, and pharmacokinetics of glut-BDNIC. To test the hypothesis that glut-BDNICs vasodilate by releasing NO in its reduced [nitroxyl (HNO)] state, a bioassay method of isolated, preconstricted ovine mesenteric arterial rings was used in the presence of selective scavengers of HNO or NO free radical (NO); the vasodilatory effects of glut-BDNIC were found to have characteristics similar to those of an HNO donor and markedly different than an NO donor.
View Article and Find Full Text PDFNitrite and S-nitrosothiols (SNOs) are both byproducts of nitric oxide (NO) metabolism and are proposed to cause vasodilation via activation of soluble guanylate cyclase (sGC). We have previously reported that while SNOs are potent vasodilators at physiological concentrations, nitrite itself only produces vasodilation at supraphysiological concentrations. Here, we tested the hypothesis that sub-vasoactive concentrations of nitrite potentiate the vasodilatory effects of SNOs.
View Article and Find Full Text PDFS-nitrosothiols (SNOs) are metabolites of NO with potent vasodilatory activity. Our previous studies in sheep indicated that intra-arterially infused SNOs dilate the mesenteric vasculature more than the femoral vasculature. We hypothesized that the mesenteric artery is more responsive to SNO-mediated vasodilation, and investigated various steps along the NO/cGMP pathway to determine the mechanism for this difference.
View Article and Find Full Text PDFNitric oxide (NO) and O2 are both three-to four-fold more soluble in biological lipids than in aqueous solutions. Their higher concentration within plasma lipids accelerates NO autoxidation to an extent that may be of importance to overall NO bioactivity. This study was undertaken to test the hypothesis that increased plasma lipids after a high-fat meal appreciably accelerate NO metabolism and alter the byproducts formed.
View Article and Find Full Text PDFIntroduction: Nitrite conveys NO-bioactivity that may contribute to the high-flow, low-resistance character of the fetal circulation. Fetal blood nitrite concentrations depend partly on placental permeability which has not been determined experimentally. We aimed to extract the placental permeability-surface (PS) product for nitrite in sheep from a computational model.
View Article and Find Full Text PDFS-nitrosothiols (SNOs) such as S-nitroso-L-cysteine (L-cysNO) are endogenous compounds with potent vasodilatory activity. During circulation in the blood, the NO moiety can be exchanged among various thiol-containing compounds by S-transnitrosylation, resulting in SNOs with differing capacities to enter the cell (membrane permeability). To determine whether the vasodilating potency of SNOs is dependent upon membrane permeability, membrane-permeable L-cysNO and impermeable S-nitroso-D-cysteine (D-cysNO) and S-nitroso-glutathione (GSNO) were infused into one femoral artery of anesthetized adult sheep while measuring bilateral femoral and systemic vascular conductances.
View Article and Find Full Text PDFBackground: Plasma nitrite serves as a reservoir of nitric oxide (NO) bioactivity. Because nitrite ingestion is markedly lower in newborns than adults, we hypothesized plasma nitrite levels would be lower in newborns than in adults, and that infants diagnosed with necrotizing enterocolitis (NEC), a disease characterized by ischemia and bacterial invasion of intestinal walls, would have lower levels of circulating nitrite in the days prior to diagnosis.
Methods: Single blood and urine samples were collected from 9 term infants and 12 adults, 72 preterm infants every 5 d for 3 wk, and from 13 lambs before and after cord occlusion.
Nitrate and nitrite are commonly thought of as inert end products of nitric oxide (NO) oxidation, possibly carcinogenic food additives, or well-water contaminants. However, recent studies have shown that nitrate and nitrite play an important role in cardiovascular and gastrointestinal homeostasis through conversion back into NO via a physiological system involving enterosalivary recirculation, bacterial nitrate reductases, and enzyme-catalyzed or acidic reduction of nitrite to NO. The diet is a key source of nitrate in adults; however, infants ingest significantly less nitrate due to low concentrations in breast milk.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2014
Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs.
View Article and Find Full Text PDFPharmacokinetic studies in the neonatal population are often limited by the small volume of blood that can be collected. The high sensitivity of (14) C-accelerator mass spectrometry (AMS) enables pharmacokinetic studies to be conducted with greatly reduced sample volumes. We demonstrated the utility of AMS in infants by studying the plasma pharmacokinetic behavior of nanogram doses of (14) C-ursodiol administered as a non-perturbing microdose or as a microtracer with therapeutic doses of non-labeled ursodiol in infants.
View Article and Find Full Text PDFNitrite has been postulated to provide a reservoir for conversion to nitric oxide (NO), especially in tissues with reduced oxygen levels as in the fetus. Nitrite would thus provide local vasodilatation and restore a balance between oxygen supply and need, a putative mechanism of importance especially in the brain. The current experiments test the hypothesis that exogenous nitrite acts as a vasodilator in the cephalic vasculature of the intact, near term fetal sheep.
View Article and Find Full Text PDFCerebral vessels in the premature newborn brain are well supplied with adrenergic nerves, stemming from the superior cervical ganglia (SCG), but their role in regulation of blood flow remains uncertain. To test this function twelve premature or two-week-old lambs were instrumented with laser Doppler flow probes in the parietal cortices to measure changes in blood flow during changes in systemic blood pressure and electrical stimulation of the SCG. In lambs delivered prematurely at ∼129 days gestation cerebral perfusion and driving pressure demonstrated a direct linear relationship throughout the physiologic range, indicating lack of autoregulation.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2013
Nitric oxide (NO) is metabolized in plasma, in part by the ferroxidase ceruloplasmin (Cp), to form nitrite and nitrosothiols (SNOs), which are proposed to mediate protective responses to hypoxia and ischemia. We hypothesized that NO metabolism would be attenuated in fetal plasma due to low Cp activity. We measured Cp concentrations and activity in plasma samples collected from adults and fetuses of humans and sheep.
View Article and Find Full Text PDFJPEN J Parenter Enteral Nutr
September 2014
Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2013
Exposure to chronic hypoxia during gestation predisposes infants to neonatal pulmonary hypertension, but the underlying mechanisms remain unclear. Here, we test the hypothesis that moderate continuous hypoxia during gestation causes changes in the rho-kinase pathway that persist in the newborn period, altering vessel tone and responsiveness. Lambs kept at 3,801 m above sea level during gestation and the first 2 wk of life were compared with those with gestation at low altitude.
View Article and Find Full Text PDF