Granular materials in nature are nearly always nonspherical, but particle shape effects in granular flow remain largely elusive. This study uses discrete element method simulations to investigate how elongated particle shapes affect the mobility of dense granular flows down a rough incline. For a range of systematically varied particle length-to-diameter aspect ratios (AR), we run simulations with various flow thicknesses h and slope angles θ to extract the well-known h_{stop}(θ) curves (below which the flow ceases) and the Fr-h/h_{stop} relations following Pouliquen's approach, where Fr=u/sqrt[gh] is the Froude number, u is the mean flow velocity, and g is the gravitational acceleration.
View Article and Find Full Text PDF