Objective: The purpose of this study was to use second-generation dual-source CT to assess the influence of size, degree of stenosis, luminal contrast attenuation, and plaque geometry on stenosis quantification in a coronary artery phantom.
Materials And Methods: Six vessel phantoms with three outer diameters (2, 3, and 4 mm), each containing three radiolucent plaques (72.2 HU) that simulated eccentric and concentric 43.
Purpose: To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC).
Materials And Methods: Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0-1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n=43) or a venous phase, were retrospectively analyzed.