Publications by authors named "Gordon E Willick"

Many patients with symptomatic bone metastases receive radiation therapy, even though radiation is known to have potential adverse effects on bone. We hypothesized that the concurrent use of a bisphosphonate drug (zoledronic acid, ZA) or a combination of ZA plus an anabolic agent (parathyroid hormone, PTH) would lead to improvements in the microarchitecture and mechanical properties of irradiated bone. Human breast cancer cells were injected into the distal femur of 56 female nude mice, which were then divided into four groups: no treatment (0 Gy), radiation administered 4 weeks postinjection (20 Gy), radiation plus ZA (12.

View Article and Find Full Text PDF

We have studied the effects of C-terminal group modifications (amide, methylamide, dimethylamide, aldehyde, and alcohol) on the conformation, adenylyl cyclase stimulation (AC), or binding of parathyroid hormone (hPTH) analogues, hPTH(1-28)NH(2) and hPTH(1-31)NH(2). hPTH(1-31)NH(2) has a C-terminal alpha-helix bounded by residues 17-29 [Chen, Z., et al.

View Article and Find Full Text PDF

The principal receptor-binding domain (Ser(17)-Val(31)) of parathyroid hormone (PTH) is predicted to form an amphiphilic alpha-helix and to interact primarily with the N-terminal extracellular domain (N domain) of the PTH receptor (PTHR). We explored these hypotheses by introducing a variety of substitutions in region 17-31 of PTH-(1-31) and assessing, via competition assays, their effects on binding to the wild-type PTHR and to PTHR-delNt, which lacks most of the N domain. Substitutions at Arg(20) reduced affinity for the intact PTHR by 200-fold or more, but altered affinity for PTHR-delNt by 4-fold or less.

View Article and Find Full Text PDF

We have used backbone N-methylations of parathyroid hormone (PTH) to study the role of these NH groups in the C-terminal amphiphilic alpha-helix of PTH (1-31) in binding to and activating the PTH receptor (P1R). The circular dichroism (CD) spectra indicated the structure of the C-terminal alpha-helix was locally disrupted around the methylation site. The CD spectra differences were explained by assuming a helix disruption for four residues on each side of the site of methylation and taking into account the known dependence of CD on the length of an alpha-helix.

View Article and Find Full Text PDF

The susceptibility to traumatic fracturing of osteopenic bones, and the spontaneous fracturing of osteoporotic bones by normal body movements caused by the microstructural deterioration and loss of bone, are currently treated with antiresorptive drugs, such as the bisphosphonates, calcitonin, estrogens, and selective estrogen receptor modulators. These antiresorptive agents target osteoclasts and, as their name indicates, reduce or stop bone resorption. They cannot directly stimulate bone formation, increase bone mass above normal values in ovariectomized rat models, or improve microstructure.

View Article and Find Full Text PDF

Osteogenic peptides are, or have potential to be, therapies for the treatment of osteoporosis, fracture repair, and repair of loosened bone implants. Human parathyroid hormone has been approved for the treatment of post-menopausal osteoporosis. Constrained analogs of PTH and the parathyroid-hormone related peptide (PTHrP) have aided the understanding of how PTH and PTHrP bind to their common receptor and some of these analogs have improved properties that make them possible candidates for clinical trial.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) mediate the action of many hormones, cytokines, and sensory and chemical signals. It is generally thought that receptor desensitization and internalization require occupancy and activation of the GPCR. PTH and PTHrP receptor (PTH1R) belongs to GPCR class B and is the major regulator of extracellular calcium homeostasis.

View Article and Find Full Text PDF

The parathyroid hormone (PTH) and some of its fragments and analogs stimulate bone growth in various animal models and humans and one of them (hPTH-(1-34)) has been approved by the USFDA for treating osteoporosis. However, there are reports that PTH can stimulate the PI-3 kinase/mitogen-activated protein kinases-mediated proliferation of rat enterocytes and that primary hyperparathyroidism in humans is associated with an increased incidence of colon cancer. Here we have investigated the ability of two PTH fragments, hPTH-(1-34)NH(2) and [Leu(27)]cyclo(Glu(22)-Lys(26))hPTH-(1-31)NH(2) to initiate colon carcinogenesis or increase the initiatory activity of the widely used colon carcinogen azoxymethane (AOM).

View Article and Find Full Text PDF

In the new millennium, humans will be traveling to Mars and eventually beyond with skeletons that respond to microgravity by self-destructing. Meanwhile in Earth's aging populations growing numbers of men and many more women are suffering from crippling bone loss. During the first decade after menopause all women suffer an accelerating loss of bone, which in some of them is severe enough to result in "spontaneous" crushing of vertebrae and fracturing of hips by ordinary body movements.

View Article and Find Full Text PDF

There is a need for anabolic drugs that can stimulate bone growth, improve bone microarchitecture, accelerate fracture healing and thus restore bone strength to oteoporotics. The anabolic agents currently leading the way to the clinic are the parathroid hormone (PTH) and some of its adenylyl cyclase-stimulating fragments. Here we discuss what is known about the genes and their products that are stimulated by PTHR1 receptor signals and in four ways cause a large accumulation of bone-building osteoblasts.

View Article and Find Full Text PDF

In an effort to improve the activities and bioavailabilities of stromal cell-derived factor-1 (SDF-1, CXCL12) sdf-(1-67)-OH (1), we have prepared a linear peptide analogue [sdf-(1-31)-NH(2) (2)] and two lactam analogues [cyclo(Lys(20)-Glu(24))-sdf-(1-31)-NH(2) (3) and cyclo(Glu(24)-Lys(28))-sdf-(1-31)-NH(2) (4)], consisting of the N-terminal region (amino acids 1-14) joined by a four-glycine linker to the C-terminal region (amino acids 56-67) of 1. Analogues 2 and 4 had eight residues of alpha-helix, as estimated from its circular dichroism (CD) spectra, in contrast to 10 residues in analogue 3. Cyclization of analogue 2 at residues 20 and 24 to give analogue 3 resulted in only a slight change to the theta;(222)/theta;(209) ratio (0.

View Article and Find Full Text PDF