Biochem Biophys Res Commun
October 2005
The fetal Alz-50 clone 1 (FAC1) protein exhibits altered expression patterns in neurodegenerative disease. Though it has been shown to bind DNA in a site-specific, phosphorylation-dependent manner, its cellular function remains unknown. Here, we demonstrate that overexpression of FAC1 in PT67 fibroblasts induces nuclear condensation and cleavage of caspase 3 to its active form indicating induction of apoptosis.
View Article and Find Full Text PDFThe E2F1 transcription factor can initiate proliferation or apoptosis, the latter by both transcription-dependent and -independent mechanisms. Recently, an E2F1 mutant lacking the DNA binding domain, E2F1(180-437), has been implicated in degradation of MDMX and MDM2 proteins via lysosomal proteases. MDM proteins block p53 dependent apoptosis by directly inhibiting p53 stability and function.
View Article and Find Full Text PDFThe E2F1 transcriptional regulator has been shown to exhibit altered expression and localization in HIVE and SIVE. However, other E2F family members are expressed in mature neurons and participate in neuronal differentiation. In an in vitro model of neuronal differentiation, E2F4 protein levels have been shown to increase.
View Article and Find Full Text PDFThe retinoblastoma susceptibility gene product (pRb) and E2F1 have been found to exhibit altered localization and increased staining in several neurodegenerative diseases. We have observed similar localization in primary murine cortical cultures treated with neurotrophic factors (NTF) or chemokines. In untreated cultures, E2F1 exhibited minimal immunostaining using the KH95 antibody, which recognizes the pRb interaction domain.
View Article and Find Full Text PDFThe fetal Alz-50 reactive clone 1 (FAC1) protein exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. Using the yeast two-hybrid screen, the human orthologue of Keap1 (hKeap1) was identified as a FAC1 interacting protein. Keap1 is an important regulator of the oxidative stress response pathway through its interaction with the Nrf family of transcription factors.
View Article and Find Full Text PDFSeveral proteins with important roles in oncogenesis have been shown to regulate the function of the E2F-1 transcription factor, which is known to activate the expression of genes required for proliferation and apoptosis. Here we identify the MDMX oncoprotein as an E2F-1-binding factor, from a yeast-two hybrid screen using a portion of the E2F-1 protein as "bait." We demonstrate that the region within MDMX needed for the E2F-1:MDMX interaction is located in the central part of the protein, C-terminal of the p53-binding domain.
View Article and Find Full Text PDF