Given the patchiness and long-term predictability of marine resources, memory of high-quality foraging grounds is expected to provide fitness advantages for central place foragers. However, it remains challenging to characterize how marine predators integrate memory with recent prey encounters to adjust fine-scale movement and use of foraging patches. Here, we used two months of movement data from harbour seals () to quantify the repeatability in foraging patches as a proxy for memory.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2021
Continuous measurements of haemodynamic and oxygenation changes in free living animals remain elusive. However, developments in biomedical technologies may help to fill this knowledge gap. One such technology is continuous-wave near-infrared spectroscopy (CW-NIRS)-a wearable and non-invasive optical technology.
View Article and Find Full Text PDFSensory ecology and physiology of free-ranging animals is challenging to study but underpins our understanding of decision-making in the wild. Existing non-invasive human biomedical technology offers tools that could be harnessed to address these challenges. Functional near-infrared spectroscopy (fNIRS), a wearable, non-invasive biomedical imaging technique measures oxy- and deoxyhaemoglobin concentration changes that can be used to detect localized neural activation in the brain.
View Article and Find Full Text PDFUnderstanding the potential effects of pile driving sounds on marine wildlife is essential for regulating offshore wind developments. Here, tracking data from 24 harbour seals were used to quantify effects and investigate sensitivity to the methods used to predict these. The Aquarius pile driving model was used to model source characteristics and acoustic propagation loss (16 Hz-20 kHz).
View Article and Find Full Text PDFAbstract: Previous studies have found that predators utilise habitat corridors to ambush prey moving through them. In the marine environment, coastal channels effectively act as habitat corridors for prey movements, and sightings of predators in such areas suggest that they may target these for foraging. Unlike terrestrial systems where the underlying habitat structure is generally static, corridors in marine systems are in episodic flux due to water movements created by tidal processes.
View Article and Find Full Text PDFAs part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
December 2016
The hearing sensitivity of 18 free-ranging and 10 captive harbour seals (Phoca vitulina) to aerial sounds was measured in the presence of typical environmental noise through auditory brainstem response measurements. A focus was put on the comparative hearing sensitivity at low frequencies. Low- and mid-frequency thresholds appeared to be elevated in both captive and free-ranging seals, but this is likely due to masking effects and limitations of the methodology used.
View Article and Find Full Text PDFMarine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability.
View Article and Find Full Text PDFOffshore construction and survey techniques can produce pulsed sounds with a high sound pressure level. In coastal waters, the areas in which they are produced are often also used by seals, potentially resulting in auditory damage or behavioral avoidance. Here, we describe a study on harbor seals during a wind farm installation off southeast England.
View Article and Find Full Text PDFThe use of high frequency sonar is now commonplace in the marine environment. Most marine mammals rely on sound to navigate, and for detecting prey, and there is the potential that the acoustic signals of sonar could cause behavioral responses. To investigate this, we carried out behavioral response tests with grey seals to two sonar systems (200 and 375 kHz systems).
View Article and Find Full Text PDF