Vegetation and precipitation are known to fundamentally influence each other. However, this interdependence is not fully represented in climate models because the characteristics of land surface (canopy) conductance to water vapor and CO are determined independently of precipitation. Working within a coupled atmosphere and land modelling framework (CAM6/CLM5; coupled Community Atmosphere Model v6/Community Land Model v5), we have developed a new theoretical approach to characterizing land surface conductance by explicitly linking its dynamic properties to local precipitation, a robust proxy for moisture available to vegetation.
View Article and Find Full Text PDFTerrestrial ecosystems regulate Earth's climate through water, energy, and biogeochemical transformations. Despite a key role in regulating the Earth system, terrestrial ecology has historically been underrepresented in the Earth system models (ESMs) that are used to understand and project global environmental change. Ecology and Earth system modeling must be integrated for scientists to fully comprehend the role of ecological systems in driving and responding to global change.
View Article and Find Full Text PDFLand models are often used to simulate terrestrial responses to future environmental changes, but these models are not commonly evaluated with data from experimental manipulations. Results from experimental manipulations can identify and evaluate model assumptions that are consistent with appropriate ecosystem responses to future environmental change. We conducted simulations using three coupled carbon-nitrogen versions of the Community Land Model (CLM, versions 4, 4.
View Article and Find Full Text PDFEarth system models (ESMs) rely on the calculation of canopy conductance in land surface models (LSMs) to quantify the partitioning of land surface energy, water, and CO fluxes. This is achieved by scaling stomatal conductance, g , determined from physiological models developed for leaves. Traditionally, models for g have been semi-empirical, combining physiological functions with empirically determined calibration constants.
View Article and Find Full Text PDFMany global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields.
View Article and Find Full Text PDFEmerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models that can be run at global scales (MIMICS and CORPSE).
View Article and Find Full Text PDFSimulating global fluxes of water, carbon, and energy at the land surface requires accurate and versatile models of stomatal conductance, currently represented by structurally similar and interchangeable forms that share weaknesses at environmental extremes.
View Article and Find Full Text PDFAccurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty to projections of global carbon fluxes. Here we compared the representation of photosynthesis in seven TBMs by examining leaf and canopy level responses of photosynthetic CO assimilation (A) to key environmental variables: light, temperature, CO concentration, vapor pressure deficit and soil water content.
View Article and Find Full Text PDFDecomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. We tested the litter decomposition parameterization of the community land model version 4 (CLM4), the terrestrial component of the community earth system model, with data from the long-term intersite decomposition experiment team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America.
View Article and Find Full Text PDFIndustrialization has significantly altered atmospheric chemistry by increasing concentrations of chemicals such as nitrogen oxides (NO( x )) and volatile organic carbon, which react in the presence of sunlight to produce tropospheric ozone (O(3)). Ozone is a powerful oxidant that causes both visual and physiological damage to plants, impairing the ability of the plant to control processes like photosynthesis and transpiration. Damage to photosynthesis and stomatal conductance does not always occur at the same rate, which generates a problem when using the Ball-Berry model to predict stomatal conductance because the calculations directly rely on photosynthesis rates.
View Article and Find Full Text PDFMore than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale.
View Article and Find Full Text PDFTerrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2010
Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes.
View Article and Find Full Text PDFThe world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration.
View Article and Find Full Text PDFAdding the effects of changes in land cover to the A2 and B1 transient climate simulations described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change leads to significantly different regional climates in 2100 as compared with climates resulting from atmospheric SRES forcings alone. Agricultural expansion in the A2 scenario results in significant additional warming over the Amazon and cooling of the upper air column and nearby oceans. These and other influences on the Hadley and monsoon circulations affect extratropical climates.
View Article and Find Full Text PDFLand use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.
View Article and Find Full Text PDFPrevious estimates of land-atmosphere interaction (the impact of soil moisture on precipitation) have been limited by a lack of observational data and by the model dependence of computational estimates. To counter the second limitation, a dozen climate-modeling groups have recently performed the same highly controlled numerical experiment as part of a coordinated comparison project. This allows a multimodel estimation of the regions on Earth where precipitation is affected by soil moisture anomalies during Northern Hemisphere summer.
View Article and Find Full Text PDF