Recent improvements to the comparison-based method of digital waveform generation increased the reproducibility of the waveforms so that the higher-order Mathieu stability zones can be accessed reliably. Digitally driven quadrupole mass filters access these zones using a fixed AC voltage and rectangular waveforms that are defined by a duty cycle. In this context, the duty cycle is the fraction of the waveform period where the waveform remains in the high state.
View Article and Find Full Text PDFThe performance of a segmented quadrupole mass filter operated with rectangular waveforms and capacitively coupled rectangular waveforms applied to the prefilters was examined on a home-built quadrupole-Orbitrap platform. For peak widths of 50 /, 100% isolation efficiency was achieved, which fell to approximately 20% for 5 / peak width for a rectangular waveform of 150 V. Due to a small exit aperture following the mass filter, peak structure was observed in both experimental peak shapes and those simulated using SIMION.
View Article and Find Full Text PDFIon mobility-mass spectrometry (IMS-MS) is used to analyze complex samples and provide structural information on unknown compounds. As the complexity of samples increases, there is a need to improve the resolution of IMS-MS instruments to increase the rate of molecular identification. This work evaluated a cyclable and variable path length (and hence resolving power) multilevel Structures for Lossless Ion Manipulations (SLIM) platform to achieve a higher resolving power than what was previously possible.
View Article and Find Full Text PDFα-Synuclein is an intrinsically disordered protein that plays a critical role in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Proteomics studies of human brain samples have associated the modification of the O-linked -acetyl-glucosamine (O-GlcNAc) to several synucleinopathies; in particular, the position of the O-GlcNAc can regulate protein aggregation and subsequent cell toxicity. There is a need for site specific O-GlcNAc α-synuclein screening tools to direct better therapeutic strategies.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2023
Rationale: Hybrid mass spectrometers combine multiple mass analyzers to achieve optimal performance in terms of tandem mass spectrometry, high mass resolving power, and mass measurement accuracy for studying highly complex samples. As a result, the need for transport, trapping, and control of ion kinetic energies is critical for the successful integration of multiple mass analyzers and hybrid instrument operation. In addition, transportation of ion populations between two physically distinct locations can result in time-of-flight (TOF) discrimination against ions with widely disparate m/z values, compromising full mass spectral performance.
View Article and Find Full Text PDFHigh-resolution ion mobility spectrometry-mass spectrometry (HR-IMS-MS) instruments have enormously advanced the ability to characterize complex biological mixtures. Unfortunately, HR-IMS and HR-MS measurements are typically performed independently due to mismatches in analysis time scales. Here, we overcome this limitation by using a dual-gated ion injection approach to couple an 11 m path length structures for lossless ion manipulations (SLIM) module to a Q-Exactive Plus Orbitrap MS platform.
View Article and Find Full Text PDFDigital mass filters are advantageous for the analysis of large molecules due to the ability to perform ion isolation of high-/ ions without the generation of very high radio frequency (RF) and DC voltages. Experimentally determined Mathieu stability diagrams of stability zone 1,1 for capacitively coupled digital waveforms show a voltage offset between the quadrupole rod pairs is introduced by the capacitors which is dependent on the voltage magnitude of the waveform and the duty cycle. This changes the ion's value from = 0 to < 0.
View Article and Find Full Text PDFTraveling wave structures for lossless ion manipulation (TW-SLIM) has proven a valuable tool for the separation and study of gas-phase ions. Unfortunately, many of the traditional components of TW-SLIM experiments manifest practical and financial barriers to the technique's broad implementation. To this end, a series of technological innovations and methodologies are presented which enable for simplified SLIM experimentation and more rapid TW-SLIM prototyping.
View Article and Find Full Text PDFHere, we describe a digital-waveform dual-quadrupole mass spectrometer that enhances the performance of our drift tube FT-IMS high-resolution Orbitrap mass spectrometer (MS). The dual-quadrupole analyzer enhances the instrument capabilities for studies of large protein and protein complexes. The first quadrupole (q) provides a means for performing low-energy collisional activation of ions to reduce or eliminate noncovalent adducts, viz.
View Article and Find Full Text PDFFourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with liquid chromatography (LC) is a powerful combination useful in many research areas due to the utility of high mass resolving power and mass measurement accuracy for studying highly complex samples. Ideally, every analyte in a complex sample can be subjected to accurate mass MS/MS analysis to aid in identification. FT-ICR MS can provide high mass resolving power and mass accuracy at the cost of long data acquisition periods, reducing the number of spectra that can be acquired per unit time.
View Article and Find Full Text PDFOver the past few years, structures for lossless ion manipulations (SLIM) have used traveling waves (TWs) to move ions over long serpentine paths that can be further lengthened by routing the ions through multiple passages of the same path. Such SLIM "multipass" separations provide unprecedentedly high ion mobility resolving powers but are ultimately limited in their ion mobility range because of the range of mobilities spanned in a single pass; that is, higher mobility ions ultimately "overtake" and "lap" lower mobility ions that have experienced fewer passes, convoluting their arrival time distribution at the detector. To achieve ultrahigh resolution separations over broader mobility ranges, we have developed a new multilevel SLIM possessing multiple stacked serpentine paths.
View Article and Find Full Text PDFFourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for high-resolution analysis of biomolecules. However, relatively long signal acquisition periods are needed to achieve mass spectra with high resolution. The use of multiple detector electrodes for detection of harmonic frequencies has been introduced as one approach to increase scan rate for a given resolving power or to obtain increased resolving power for a given detection period.
View Article and Find Full Text PDFWe describe the development of a dual-polarity traveling-wave (TW) structures for lossless ion manipulations (SLIM) ion mobility spectrometry (IMS) device capable of switching both positive and negative ions that are traveling simultaneously along the same path to different regions of the SLIM. Through simulations, the routing efficiency of the SLIM TW switch was compared to a SLIM direct-current-based (DC) switch developed previously for IMS-MS. We also report on the initial experimental evaluation of a dual-polarity SLIM platform, which uses the TW-based ion switch to achieve higher resolution multipass serpentine ultralong path with extended routing (SUPER) IMS separations.
View Article and Find Full Text PDFStrong orthogonality between differential ion mobility spectrometry (FAIMS) and mass spectrometry (MS) makes their hybrid a powerful approach to separate isomers and isobars. Harnessing that power depends on high resolution in both dimensions. The ultimate mass resolution and accuracy are delivered by Fourier Transform MS increasingly realized in Orbitrap MS, whereas FAIMS resolution is generally maximized by buffers rich in He or H that elevate ion mobility and lead to prominent non-Blanc effects.
View Article and Find Full Text PDFA new apparatus for ion soft landing research was developed and is reported in this contribution. The instrument includes a dual polarity high-flux electrospray ionization (ESI) interface, a tandem electrodynamic ion funnel system, a collisional flatapole, a quadrupole mass filter, and a focusing lens. The instrument enables production of ionic layers by soft landing of mass-selected ions onto surfaces with balanced or imbalanced charge conditions using either layer-by-layer (LBL) or fast polarity switching modes.
View Article and Find Full Text PDFStrong orthogonality to mass spectrometry makes differential ion mobility spectrometry (FAIMS) a powerful tool for isomer separations. However, high FAIMS resolution has been achieved overall only with buffers rich in He or H. That obstructed coupling to Fourier transform mass spectrometers operating under ultrahigh vacuum, but exceptional m/ z resolution and accuracy of FTMS are indispensable for frontline biological and environmental applications.
View Article and Find Full Text PDFFourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is well-renowned for its ultrahigh resolving power and mass measurement accuracy. As with other types of analytical instrumentation, achievable signal-to-noise ratio (S/N) is an important analytical figure of merit with FTICR-MS. S/N can be improved with higher magnetic fields and longer time-domain signal acquisition periods.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
July 2018
Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal.
View Article and Find Full Text PDFAnal Chem
July 2017
Matrix-Assisted Laser Desorption Ionization, MALDI, has been increasingly used in a variety of biomedical applications, including tissue imaging of clinical tissue samples, and in drug discovery and development. These studies strongly depend on the performance of the analytical instrumentation and would drastically benefit from improved sensitivity, reproducibility, and mass/spatial resolution. In this work, we report on a novel combined MALDI/ESI interface, which was coupled to different Orbitrap mass spectrometers (Elite and Q Exactive Plus) and extensively characterized with peptide and protein standards, and in tissue imaging experiments.
View Article and Find Full Text PDFIon mobility (IM) separations have a broad range of analytical applications, but insufficient resolution often limits their utility. Here, we report on ion mobility separations in a structures for lossless ion manipulations (SLIM) serpentine ultralong path with extended routing (SUPER) traveling wave (TW) ion mobility (IM) module in conjunction with mass spectrometry (MS). Ions were confined in the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths.
View Article and Find Full Text PDFFT-based high performance mass analyzers yield increased resolving power and mass measurement accuracy, yet require increased duration of signal acquisition that can limit many applications. The implementation of stronger magnetic fields, multiple detection electrodes for harmonic signal detection, and an array of multiple mass analyzers arranged along the magnetic field axis have been used to decrease required acquisition time. The results presented here show that multiple ion cyclotron resonance (ICR) mass analyzers can also be implemented orthogonal to the central magnetic field axis.
View Article and Find Full Text PDFIn this work we report an approach for spatial and temporal gas-phase ion population manipulation, wherein we collapse ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventional traveling wave (TW)-driven region to a region where the TW is intermittently halted or "stuttered". This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression.
View Article and Find Full Text PDFWe report the development and initial evaluation of a 13 m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC, and TW electrodes and positioned with a 2.75 mm intersurface gap.
View Article and Find Full Text PDFWe report on ion mobility (IM) separations achievable using traveling waves (TW) in a Structures for Lossless Ion Manipulations (SLIM) module having a 44 cm path length and 16 90° turns. The performance of the TW-SLIM module was evaluated for ion transmission and IM separations with different RF, TW parameters, and SLIM surface gaps in conjunction with mass spectrometry. In this work, TWs were created by the transient and dynamic application of DC potentials.
View Article and Find Full Text PDFMass spectrometry (MS)-based multi-omic measurements, including proteomics, metabolomics, lipidomics, and glycomics, are increasingly transforming our ability to characterize and understand biological systems. Multi-omic analyses and the desire for comprehensive measurement coverage presently have limitations due to the chemical diversity and range of abundances of biomolecules in complex samples. Advances addressing these challenges increasingly are based upon the ability to quickly separate, react and otherwise manipulate sample components for analysis by MS.
View Article and Find Full Text PDF