Publications by authors named "Gordiĭchuk P"

Aim: This study aims to assess the effectiveness of urothelial cancer treatment in Ukraine, utilizing population-based data from the National Cancer Registry. The primary goal is to evaluate trends and approaches to therapy, with a focus on overall survival rates in patients with urothelial tumors.

Materials And Methods: A retrospective cross-sectional analysis was conducted based on the National Cancer Registry, involving 12 698 patients (2008-2020) with urothelial tumors of the upper urinary tract (UTUC) and bladder cancer (BC) who underwent surgical treatment.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes (CTLs) carry out immunosurveillance by scanning target cells of diverse physical properties for the presence of antigens. While the recognition of cognate antigen by the T cell receptor is the primary signal for CTL activation, it has become increasingly clear that the mechanical stiffness of target cells plays an important role in antigen-triggered T cell responses. However, the molecular machinery within CTLs that transduces the mechanical information of tumor cells remains unclear.

View Article and Find Full Text PDF

Introduction: Providing oncological care in conflict conditions is a difficult test for the country's health care system, especially if aggression is carried out in violation of the main international rules of conduct of war, the treaties of the Geneva Convention, when the aggressor attacks the civilian population.

Material And Methods: Having conducted an analysis of the style of military operations conducted by the aggressor and the peculiarities of the territories of Ukraine, the quality of providing oncological care before the conflict, the digital transformation of the state, the use of the application Diya by the population, and the functioning of the eHealth electronic medical telecommunication information system, we identified four zones of providing oncological care during martial law.

Results: Each zone is defined and the amount of consultation and diagnostics with subsequent treatment assistance to the population is presented.

View Article and Find Full Text PDF

Advances implemented in the complex treatment of distal rectal cancer led to a decrease in the number of loco-regional recurrences to 5-10%, but high rates of distant metastases remain at up to 30%. They lead to disappointing long-term oncological results, which requires the search for improvement of each of the stages of complex treatment. As a consequence of the questionable effectiveness of adjuvant polychemotherapy for distal rectal cancer, the question of the possibility of transferring drug treatment from an adjuvant to a neoadjuvant regimen is reasonably raised.

View Article and Find Full Text PDF

Polymers that extend covalently in two dimensions have attracted recent attention as a means of combining the mechanical strength and in-plane energy conduction of conventional two-dimensional (2D) materials with the low densities, synthetic processability and organic composition of their one-dimensional counterparts. Efforts so far have proven successful in forms that do not allow full realization of these properties, such as polymerization at flat interfaces or fixation of monomers in immobilized lattices. Another frequently employed synthetic approach is to introduce microscopic reversibility, at the cost of bond stability, to achieve 2D crystals after extensive error correction.

View Article and Find Full Text PDF

Living plants provide an opportunity to rethink the design and fabrication of devices ordinarily produced from plastic and circuit boards and ultimately disposed of as waste. The spongy mesophyll is a high -surface area composition of parenchyma cells that supports gas and liquid exchange through stomata pores within the surface of most leaves. Here, we investigate the mesophyll of living plants as biocompatible substrates for the photonic display of thin nanophosphorescent films for photonic applications.

View Article and Find Full Text PDF

Macrophages are a critical part of the human immune response, and their collective heterogeneity is implicated in disease progression and prevention. A nondestructive, label-free tool does not currently exist for profiling the dynamic, antigenic responses of single macrophages in a collection to correlate with specific molecular expression and correlated biophysical properties at the cellular level, despite the potential for diagnosis and therapeutics. Herein, we develop a nanosensor chemical cytometry (NCC) that can profile the heterogeneity of inducible nitric oxide synthase (iNOS) responses from macrophage populations.

View Article and Find Full Text PDF

Two-dimensional (2D) polymers are extended networks of multi-functional repeating units that are covalently linked together but confined to a single plane. The past decade has witnessed a surge in interest and effort toward producing and utilizing 2D polymers. However, facile synthesis schemes suitable for mass production are yet to be realized.

View Article and Find Full Text PDF

Nanosensors have proven to be powerful tools to monitor single cells, achieving spatiotemporal precision even at molecular level. However, there has not been way of extending this approach to statistically relevant numbers of living cells. Herein, we design and fabricate nanosensor array in microfluidics that addresses this limitation, creating a Nanosensor Chemical Cytometry (NCC).

View Article and Find Full Text PDF

Decoding wound signalling in plants is critical for understanding various aspects of plant sciences, from pest resistance to secondary metabolite and phytohormone biosynthesis. The plant defence responses are known to primarily involve NADPH-oxidase-mediated HO and Ca signalling pathways, which propagate across long distances through the plant vasculature and tissues. Using non-destructive optical nanosensors, we find that the HO concentration profile post-wounding follows a logistic waveform for six plant species: lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia oleracea), strawberry blite (Blitum capitatum), sorrel (Rumex acetosa) and Arabidopsis thaliana, ranked in order of wave speed from 0.

View Article and Find Full Text PDF

Colloidal dispersions of nanomaterials are often polydisperse in size, significantly complicating their characterization. This is particularly true for materials early in their historical development due to synthetic control, dispersion efficiency, and instability during storage. Because a wide range of system properties and technological applications depend on particle dimensions, it remains an important problem in nanotechnology to identify a method for the routine characterization of polydispersity in nanoparticle samples, especially changes over time.

View Article and Find Full Text PDF

Molecular tunneling junctions should enable the tailoring of charge-transport at the quantum level through synthetic chemistry but are hindered by the dominance of the electrodes. We show that the frontier orbitals of molecules can be decoupled from the electrodes, preserving their relative energies in self-assembled monolayers even when a top-contact is applied. This decoupling leads to the remarkable observation of tunneling probabilities that increase with distance in a series of oligothiophenes, which we explain using a two-barrier tunneling model.

View Article and Find Full Text PDF

A new class of polymer spherical nucleic acid (SNA) conjugates comprised of poly(lactic-co-glycolic acid) (PLGA) nanoparticle (NP) cores is reported. The nucleic acid shell that defines the PLGA-SNA exhibits a half-life of more than 2 h in fetal bovine serum. Importantly, the PLGA-SNAs can be utilized to encapsulate a hydrophobic model drug, coumarin 6, which can then be released in a polymer composition-dependent tunable manner, while the dissociation rate of the nucleic acid shell remains relatively constant, regardless of core composition.

View Article and Find Full Text PDF

Scanning probe block copolymer lithography (SPBCL), in combination with density-functional theory (DFT), has been used to design and synthesize hydrogen evolution catalysts. DFT was used to calculate the hydrogen adsorption energy on a series of single-element, bimetallic, and trimetallic (Au, Pt, Ni, and Cu) substrates to provide leads that could be synthesized in the form of alloy or phase-separated particles via SPBCL. PtAuCu (18 nm, ∼1:1:1 stoichiometry) has been identified as a homogeneous alloy phase that behaves as an effective hydrogen evolution catalyst in acidic aqueous media, even when it is made in bulk form via solution phase methods.

View Article and Find Full Text PDF

This paper examines the relationship between mechanical deformation and the electronic properties of self-assembled monolayers (SAMs) of the oligothiophene 4-([2,2':5',2″:5″,2‴-quaterthiophen]-5-yl)butane-1-thiol (T4C4) in tunneling junctions using conductive probe atomic force microscopy (CP-AFM) and eutectic Ga-In (EGaIn). We compared shifts in conductivity, transition voltages of T4C4 with increasing AFM tip loading force to alkanethiolates. While these shifts result from an increasing tilt angle from penetration of the SAM by the AFM tip for the latter, we ascribe them to distortions of the π system present in T4C4, which is more mechanically robust than alkanethiolates of comparable length; SAMs comprising T4C4 shows about five times higher Young's modulus than alkanethiolates.

View Article and Find Full Text PDF

A high-throughput, solution-based, scanning-probe photochemical nanopatterning approach, which does not require the use of probes with subwavelength apertures, is reported. Specifically, pyramid arrays made from high-refractive-index polymeric materials were constructed and studied as patterning tools in a conventional liquid-phase beam pen lithography experiment. Two versions of the arrays were explored with either metal-coated or metal-free tips.

View Article and Find Full Text PDF

is important for the field of bioelectronics. Here, a general concept based on phage display is presented to evolve small peptide binders for immobilizing and orienting large protein complexes on semiconducting substrates. Employing this method, photosystem I is incorporated into solid-state biophotovoltaic cells.

View Article and Find Full Text PDF

Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed predominantly by the Sec translocase. This system consists of the membrane-embedded protein-conducting channel SecYEG, the motor ATPase SecA, and the heterotrimeric SecDFyajC membrane protein complex. Previous studies suggest that anionic lipids are essential for SecA activity and that the N terminus of SecA is capable of penetrating the lipid bilayer.

View Article and Find Full Text PDF

Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assemblies in different dimensions to achieve 2D conducting polymer nanosheets with structural ordering at the mesoscale. The supramolecular assemblies of amphipathic perfluorinated carboxylic acids and block co-polymers serve as 2D interfaces and meso-inducing moieties, respectively, which guide the polymerization of aniline into 2D, free-standing mesoporous conducting polymer nanosheets.

View Article and Find Full Text PDF

One of the most commonly used cathode interlayers for increasing the efficiency of electron injection/extraction in organic electronic devices is an ultrathin layer of LiF. Our capacitance measurements and electrical conductivity analysis show that thin films of fullerene derivatives and their mixtures with polymers are unintentionally doped upon deposition of LiF. The level of doping depends on the chemical structure of the fullerene derivatives.

View Article and Find Full Text PDF

Microstructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting poly(N-vinylimidazole)-based hydrogel is defined by the PDMS stamp in pattern and size.

View Article and Find Full Text PDF

A method to produce highly efficient and long-range vertical charge transport is demonstrated in an undoped polythiophene thin film, with average mobilities above 3.1 cm(2) V(-1) s(-1) . These record high mobilities are achieved by controlled orientation of the polymer crystallites enabling the most efficient and fastest charge transport along the chain backbones and across multiple chains.

View Article and Find Full Text PDF

Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte (PE) adsorption processes are monitored real-time by optical reflectometry and a quartz crystal microbalance with dissipation monitoring (QCM-D).

View Article and Find Full Text PDF

Photosynthesis is Nature's major process for converting solar into chemical energy. One of the key players in this process is the multiprotein complex photosystem I (PSI) that through absorption of incident photons enables electron transfer, which makes this protein attractive for applications in bioinspired photoactive hybrid materials. However, the efficiency of PSI is still limited by its poor absorption in the green part of the solar spectrum.

View Article and Find Full Text PDF

The ability to pattern functional moieties with well-defined architectures is highly important in material science, nanotechnology and bioengineering. Although two-dimensional surfaces can serve as attractive platforms, direct patterning them in solution with regular arrays remains a major challenge. Here we develop a versatile route to pattern two-dimensional free-standing surfaces in a controlled manner assisted by monomicelle close-packing assembly of block copolymers, which is unambiguously revealed by direct visual observation.

View Article and Find Full Text PDF