Publications by authors named "Gordana Wutz"

Article Synopsis
  • Genomic DNA is organized into chromatin with the help of histones and cohesin, but their cooperation in genome regulation is not well understood.
  • Researchers identified Phf2, a histone demethylase, as a protein that interacts with cohesin, indicating a potential role in regulating transcription at active gene sites.
  • The studies show that Phf2 helps recruit cohesin to transcription start sites and affects the size of chromatin compartments, highlighting an important relationship between histone modification and genome architecture in eukaryotic cells.
View Article and Find Full Text PDF

Cohesin connects CTCF-binding sites and other genomic loci in cis to form chromatin loops and replicated DNA molecules in trans to mediate sister chromatid cohesion. Whether cohesin uses distinct or related mechanisms to perform these functions is unknown. Here, we describe a cohesin hinge mutant that can extrude DNA into loops but is unable to mediate cohesion in human cells.

View Article and Find Full Text PDF

Extended loop extrusion across the immunoglobulin heavy-chain (Igh) locus facilitates V-DJ recombination following downregulation of the cohesin-release factor Wapl by Pax5, resulting in global changes in the chromosomal architecture of pro-B cells. Here, we demonstrate that chromatin looping and V-J recombination at the Igk locus were insensitive to Wapl upregulation in pre-B cells. Notably, the Wapl protein was expressed at a 2.

View Article and Find Full Text PDF

In eukaryotes, genomic DNA is extruded into loops by cohesin. By restraining this process, the DNA-binding protein CCCTC-binding factor (CTCF) generates topologically associating domains (TADs) that have important roles in gene regulation and recombination during development and disease. How CTCF establishes TAD boundaries and to what extent these are permeable to cohesin is unclear.

View Article and Find Full Text PDF

Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites.

View Article and Find Full Text PDF
Article Synopsis
  • * The research reveals that during epigenetic reprogramming, while chromatin becomes more open and accessible, there are protective mechanisms in place to maintain proper gene expression, which later undergoes further changes for spermatogonial development.
  • * The findings indicate that issues in the development and organization of the chromatin can lead to reduced fertility, highlighting how specific chromatin structures are crucial for the formation of gametes in both males and females.
View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells.

View Article and Find Full Text PDF

It is currently assumed that 3D chromosomal organization plays a central role in transcriptional control. However, depletion of cohesin and CTCF affects the steady-state levels of only a minority of transcripts. Here, we use high-resolution Capture Hi-C to interrogate the dynamics of chromosomal contacts of all annotated human gene promoters upon degradation of cohesin and CTCF.

View Article and Find Full Text PDF

Nuclear processes, such as V(D)J recombination, are orchestrated by the three-dimensional organization of chromosomes at multiple levels, including compartments and topologically associated domains (TADs) consisting of chromatin loops. TADs are formed by chromatin-loop extrusion, which depends on the loop-extrusion function of the ring-shaped cohesin complex. Conversely, the cohesin-release factor Wapl restricts loop extension.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic genomes are structured into loops formed by cohesin complexes, which can be stabilized by CTCF or removed by WAPL.
  • Some loops remain stable for hours despite cohesin typically having a short residence time due to WAPL's actions.
  • In G1-phase, acetylated cohesin can bind chromatin for extended periods, and both CTCF and the acetyltransferase ESCO1 play key roles in maintaining these long-lived loops and enhancing chromatin organization.
View Article and Find Full Text PDF

Eukaryotic genomes are folded into loops and topologically associating domains, which contribute to chromatin structure, gene regulation, and gene recombination. These structures depend on cohesin, a ring-shaped DNA-entrapping adenosine triphosphatase (ATPase) complex that has been proposed to form loops by extrusion. Such an activity has been observed for condensin, which forms loops in mitosis, but not for cohesin.

View Article and Find Full Text PDF

Topoisomerase II (TOP2) relieves torsional stress by forming transient cleavage complex intermediates (TOP2ccs) that contain TOP2-linked DNA breaks (DSBs). While TOP2ccs are normally reversible, they can be "trapped" by chemotherapeutic drugs such as etoposide and subsequently converted into irreversible TOP2-linked DSBs. Here, we have quantified etoposide-induced trapping of TOP2ccs, their conversion into irreversible TOP2-linked DSBs, and their processing during DNA repair genome-wide, as a function of time.

View Article and Find Full Text PDF

Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry.

View Article and Find Full Text PDF

As carriers of the genetic material, chromosomes are of prime interest in the life sciences. Although all aspects of chromosome biology should ideally be studied in living cells, the isolation of chromosomes can greatly facilitate their analysis. This can be achieved by lysing mitotic or meiotic cells under conditions where their content, including their chromosomes, is spread out on the surface of microscopy glass slides.

View Article and Find Full Text PDF

Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing.

View Article and Find Full Text PDF

Recent genome analyses have identified recurrent mutations in the cohesin complex in a wide range of human cancers. Here we demonstrate that the most frequently mutated subunit of the cohesin complex, , displays a strong synthetic lethal interaction with its paralog . Mechanistically, STAG1 loss abrogates sister chromatid cohesion in mutated but not in wild-type cells leading to mitotic catastrophe, defective cell division and apoptosis.

View Article and Find Full Text PDF

Cohesion between sister chromatids is established during DNA replication but needs to be maintained to enable proper chromosome-spindle attachments in mitosis or meiosis. Cohesion is mediated by cohesin, but also depends on cohesin acetylation and sororin. Sororin contributes to cohesion by stabilizing cohesin on DNA.

View Article and Find Full Text PDF

Somatic mutations of the cohesin complex subunit STAG2 are present in diverse tumor types. We and others have shown that STAG2 inactivation can lead to loss of sister chromatid cohesion and alterations in chromosome copy number in experimental systems. However, studies of naturally occurring human tumors have demonstrated little, if any, correlation between STAG2 mutational status and aneuploidy, and have further shown that STAG2-deficient tumors are often euploid.

View Article and Find Full Text PDF

Mammalian genomes contain several billion base pairs of DNA that are packaged in chromatin fibres. At selected gene loci, cohesin complexes have been proposed to arrange these fibres into higher-order structures, but how important this function is for determining overall chromosome architecture and how the process is regulated are not well understood. Using conditional mutagenesis in the mouse, here we show that depletion of the cohesin-associated protein Wapl stably locks cohesin on DNA, leads to clustering of cohesin in axial structures, and causes chromatin condensation in interphase chromosomes.

View Article and Find Full Text PDF

Sister chromatid cohesion, mediated by cohesin and regulated by Sororin, is essential for chromosome segregation. In mammalian cells, cohesion establishment and Sororin recruitment to chromatin-bound cohesin depends on the acetyltransferases Esco1 and Esco2. Mutations in Esco2 cause Roberts syndrome, a developmental disease in which mitotic chromosomes have a 'railroad' track morphology.

View Article and Find Full Text PDF

Separase is a protease whose liberation from its inhibitory chaperone Securin triggers sister chromatid disjunction at anaphase onset in yeast by cleaving cohesin's kleisin subunit. We have created conditional knockout alleles of the mouse Separase and Securin genes. Deletion of both copies of Separase but not Securin causes embryonic lethality.

View Article and Find Full Text PDF

Mouse monoclonal antibodies (mAbs) were employed to select neutralization escape mutants of equine rhinitis A virus (ERAV). Amino acid changes in the ERAV mutants resulting in resistance to neutralization were identified in capsid protein VP1 at Lys-114, Pro-240 and Thr-241. Although the changes were located in different parts of the polypeptide chain, these mutants exhibited cross-resistance against all four mAbs employed, indicating that these residues contribute to a single immunogenic site.

View Article and Find Full Text PDF

DM actions as a class II chaperone promote capture of diverse peptides inside the endocytic compartment(s). DM mutant cells studied to date express class II bound by class II-associated invariant chain-derived peptide (CLIP), a short proteolytic fragment of the invariant chain, and exhibit defective peptide-loading abilities. To evaluate DM functional contributions in k haplotype mice, we engineered a novel mutation at the DMa locus via embryonic stem cell technology.

View Article and Find Full Text PDF