Publications by authors named "Gordan Mikuljan"

Owing to recent developments in CMOS technology, it is now possible to exploit tomographic microscopy at third-generation synchrotron facilities with unprecedented speeds. Despite this rapid technical progress, one crucial limitation for the investigation of realistic dynamic systems has remained: a generally short total acquisition time at high frame rates due to the limited internal memory of available detectors. To address and solve this shortcoming, a new detection and readout system, coined GigaFRoST, has been developed based on a commercial CMOS sensor, acquiring and streaming data continuously at 7.

View Article and Find Full Text PDF

Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique is non-destructive, meaning additional analyses can take place after data collection. To exploit the state-of-the-art capabilities at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the Swiss Light Source, a general-use moderate-to-high-temperature furnace has been developed.

View Article and Find Full Text PDF

At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline of the Swiss Light Source with an energy range of 8-45 keV and voxel size from 0.37 µm to 7.4 µm, full tomographic datasets are typically acquired in 5 to 10 min.

View Article and Find Full Text PDF

Phase-sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption-based imaging, and therefore new and otherwise inaccessible information. Differential phase-contrast (DPC) imaging, which uses a grating interferometer and a phase-stepping technique, has been integrated into TOMCAT, a beamline dedicated to tomographic microscopy and coherent radiology experiments at the Swiss Light Source. Developments have been made focusing on the fast acquisition and post-processing of data to enable a high-throughput of samples, with obvious advantages, also through increasing the efficiency of the detecting system, of helping to reduce radiation dose imparted to the sample.

View Article and Find Full Text PDF