Unlabelled: was to evaluate the efficiency of additive technologies in surgical treatment of patients with osteochondral defects of the humeral head articular surface against the background of chronic posterior dislocation of the shoulder by means of comparing clinical and radiological results with the McLaughlin procedure.
Materials And Methods: A prospective randomized comparative group clinical study was conducted, which included 20 patients who in 2019-2021 underwent surgical treatment of chronic posterior dislocation of the shoulder in the Traumatological and Orthopedic Department of the Institute of Traumatology and Orthopedics of the Privolzhsky Research Medical University (Nizhny Novgorod, Russia). Depending on the type of surgery, all patients were divided into 2 groups: group 1 (n=10) was subject to McLaughlin procedure, whereas group 2 (n=10) - to reconstruction of the humeral head using a customized implant based on additive technologies (3D printing).
Unlabelled: was to determine the efficacy of using digital technologies in patients with post-traumatic deformities of the zygomatico-orbital complex (ZOC) by comparing the results with the conventional methods of surgical treatment.
Materials And Methods: The article summarizes treatment results of 231 patients with ZOC injuries who underwent surgery at the clinical facilities of Privolzhsky Research Medical University (Nizhny Novgorod) in 2011-2019. There were treated 44.
Objective: Homozygosity for a 1.7 kb intragenic duplication of the Haptoglobin (Hp) gene (Hp 2-2 genotype), present in 36% of the population, has been associated with a 2-3 fold increased incidence of atherothrombosis in individuals with Diabetes (DM) in 10 longitudinal studies compared to DM individuals not homozygous for this duplication (Hp 1-1/2-1). The increased CVD risk associated with the Hp 2-2 genotype has been shown to be prevented with vitamin E supplementation in man.
View Article and Find Full Text PDFBackground: Myocarditis is characterized by inflammatory cell infiltration of the heart and subsequent deterioration of cardiac function. Monocytes are the most prominent population of accumulating leucocytes. We investigated whether in vivo administration of nanoparticle-encapsulated siRNA targeting chemokine (C-C motif) receptor 2 (CCR2)-a chemokine receptor crucial for leucocyte migration in humans and mice--reduces inflammation in autoimmune myocarditis.
View Article and Find Full Text PDFMotion artifacts continue to present a major challenge to single cell imaging in cardiothoracic organs such as the beating heart, blood vessels, or lung. In this study, we present a new water-immersion suctioning stabilizer that enables minimally invasive intravital fluorescence microscopy using water-based stick objectives. The stabilizer works by reducing major motion excursions and can be used in conjunction with both prospective or retrospective gating approaches.
View Article and Find Full Text PDFIn a cell-free approach to regenerative therapeutics, transient application of paracrine factors in vivo could be used to alter the behavior and fate of progenitor cells to achieve sustained clinical benefits. Here we show that intramyocardial injection of synthetic modified RNA (modRNA) encoding human vascular endothelial growth factor-A (VEGF-A) results in the expansion and directed differentiation of endogenous heart progenitors in a mouse myocardial infarction model. VEGF-A modRNA markedly improved heart function and enhanced long-term survival of recipients.
View Article and Find Full Text PDFDuring the inflammatory response that drives atherogenesis, macrophages accumulate progressively in the expanding arterial wall. The observation that circulating monocytes give rise to lesional macrophages has reinforced the concept that monocyte infiltration dictates macrophage buildup. Recent work has indicated, however, that macrophage accumulation does not depend on monocyte recruitment in some inflammatory contexts.
View Article and Find Full Text PDFRationale: High-resolution imaging of the heart in vivo is challenging owing to the difficulty in accessing the heart and the tissue motion caused by the heartbeat.
Objective: Here, we describe a suction-assisted endoscope for visualizing fluorescently labeled cells and vessels in the beating heart tissue through a small incision made in the intercostal space.
Methods And Results: A suction tube with a diameter of 2 to 3 mm stabilizes the local tissue motion safely and effectively at a suction pressure of 50 mm Hg.
Macrophages frequently infiltrate tumors and can enhance cancer growth, yet the origins of the macrophage response are not well understood. Here we address molecular mechanisms of macrophage production in a conditional mouse model of lung adenocarcinoma. We report that overproduction of the peptide hormone Angiotensin II (AngII) in tumor-bearing mice amplifies self-renewing hematopoietic stem cells (HSCs) and macrophage progenitors.
View Article and Find Full Text PDFThe treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2012
The environments that harbor hematopoietic stem and progenitor cells are critical to explore for a better understanding of hematopoiesis during health and disease. These compartments often are inaccessible for controlled and rapid experimentation, thus limiting studies to the evaluation of conventional cell culture and transgenic animal models. Here we describe the manufacture and image-guided monitoring of an engineered microenvironment with user-defined properties that recruits hematopoietic progenitors into the implant.
View Article and Find Full Text PDFReal-time imaging of moving organs and tissues at microscopic resolutions represents a major challenge in studying the complex biology of live animals. Here we present a technique based on a novel stabilizer setup combined with a gating acquisition algorithm for the imaging of a beating murine heart at the single-cell level. The method allows serial in vivo fluorescence imaging of the beating heart in live mice in both confocal and nonlinear modes over the course of several hours.
View Article and Find Full Text PDFDuring progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischaemic injury aggravates chronic atherosclerosis.
View Article and Find Full Text PDFIdentifying circulating tumor cells (CTCs) with greater sensitivity could facilitate early detection of cancer and rapid assessment of treatment response. Most current technologies use EpCAM expression as a CTC identifier. However, given that a significant fraction of cancer patients have low or even absent EpCAM levels, there is a need for better detection methods.
View Article and Find Full Text PDFLigands of the B7 family provide both positive and negative costimulatory signals to the CD28 family of receptors on T lymphocytes, the balance of which determines the immune response. B7-H3 is a member of the B7 family whose function in T-cell activation has been the subject of some controversy: in autoimmunity and tumor immunity, it has been described as both costimulatory and coinhibitory, while in transplantation, B7-H3 signaling is thought to contribute to graft rejection. However, we now demonstrate results to the contrary.
View Article and Find Full Text PDFTo date there is a lack of tools to map the spatio-temporal dynamics of diverse cells in experimental heart models. Conventional histology is labor intensive with limited coverage, whereas many imaging techniques do not have sufficiently high enough spatial resolution to map cell distributions. We have designed and built a high resolution, dual channel Born-normalized near-infrared fluorescence optical projection tomography system to quantitatively and spatially resolve molecular agents distribution within whole murine heart.
View Article and Find Full Text PDFObserving drug responses in the tumor microenvironment in vivo can be technically challenging. As a result, cellular responses to molecularly targeted cancer drugs are often studied in cell culture, which does not accurately represent the behavior of cancer cells growing in vivo. Using high-resolution microscopy and fluorescently labeled genetic reporters for apoptosis, we developed an approach to visualize drug-induced cell death at single-cell resolution in vivo.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) can control cancer growth and exist in almost all solid neoplasms. The cells are known to descend from immature monocytic and granulocytic cells, respectively, which are produced in the bone marrow. However, the spleen is also a recently identified reservoir of monocytes, which can play a significant role in the inflammatory response that follows acute injury.
View Article and Find Full Text PDFRecognition and clearance of a bacterial infection are a fundamental properties of innate immunity. Here, we describe an effector B cell population that protects against microbial sepsis. Innate response activator (IRA) B cells are phenotypically and functionally distinct, develop and diverge from B1a B cells, depend on pattern-recognition receptors, and produce granulocyte-macrophage colony-stimulating factor.
View Article and Find Full Text PDFObjectives: The aim of this study was to explore post-myocardial infarction (MI) myocardial inflammation.
Background: Innate immune cells are centrally involved in infarct healing and are emerging therapeutic targets in cardiovascular disease; however, clinical tools to assess their presence in tissue are scarce. Furthermore, it is currently not known if the nonischemic remote zone recruits monocytes.
Monocytes (Mo) and macrophages (MΦ) are emerging therapeutic targets in malignant, cardiovascular, and autoimmune disorders. Targeting of Mo/MΦ and their effector functions without compromising innate immunity's critical defense mechanisms first requires addressing gaps in knowledge about the life cycle of these cells. Here we studied the source, tissue kinetics, and clearance of Mo/MΦ in murine myocardial infarction, a model of acute inflammation after ischemic injury.
View Article and Find Full Text PDFBackground: Atherosclerotic lesions are believed to grow via the recruitment of bone marrow-derived monocytes. Among the known murine monocyte subsets, Ly-6C(high) monocytes are inflammatory, accumulate in lesions preferentially, and differentiate. Here, we hypothesized that the bone marrow outsources the production of Ly-6C(high) monocytes during atherosclerosis.
View Article and Find Full Text PDFExcessive and prolonged activity of inflammatory monocytes is a hallmark of many diseases with an inflammatory component. In such conditions, precise targeting of these cells could be therapeutically beneficial while sparing many essential functions of the innate immune system, thus limiting unwanted effects. Inflammatory monocytes-but not the noninflammatory subset-depend on the chemokine receptor CCR2 for localization to injured tissue.
View Article and Find Full Text PDF