The glandular trichomes of the plant Roridula gorgonias release an extremely adhesive, visco-elastic, resinous secretion that traps a variety of insects, including those having a considerable body size. However, the specialized mutualistic mirid bug Pameridea roridulae lives and walks on this sticky plant surface without being trapped. We have sought to reveal the mechanism underlying the apparent non-sticky nature of the cuticle of this bug.
View Article and Find Full Text PDFJ Struct Biol
October 2008
The dispersal unit of wild wheat bears two prominent filaments called awns. The awns bend as they dry and straighten in a damp environment. This hygroscopic movement is explained by the orientation of the cellulose fibrils that build the cell wall, as follows.
View Article and Find Full Text PDFFor the first time, the terminal elements (spatulae) of setal (hairy) attachment devices of the beetle Gastrophysa viridula (Coleoptera, Chrysomelidae) and the fly Lucilia caesar (Diptera, Calliphoridae) were studied using transmission X-ray microscopy (TXM) with a lateral resolution of about 30 nm. Since images are taken under ambient conditions, we demonstrate here that this method can be applied to study the contact behaviour of biological systems, including animal tenent setae, in a fresh state. We observed that the attached spatulae show a viscoelastic behavior increasing the contact area and providing improved adaptability to the local topography of the surface.
View Article and Find Full Text PDFThe arolium in Lycorma delicatula is shaped as a truncated pyramid, tapering proximally. The base or the terminal area is corrugated, forming parasagittal wrinkles (period 1.5-5.
View Article and Find Full Text PDFMany representatives of the beetle family Chrysomelidae exhibit a distinctive sexual dimorphism in the structure of adhesive tarsal setae. The present study demonstrates the influence of surface roughness on the friction force of Leptinotarsa decemlineata males and females. The maximum friction force of individual beetles was measured on epoxy resin surfaces (smooth and with asperities ranging from 0.
View Article and Find Full Text PDFWater striders (Insecta, Heteroptera, Gerridae) have a complex three-dimensional waterproof hairy cover which renders them super-hydrophobic. This paper experimentally demonstrates for the first time the mechanism of the super-hydrophobicity of the cuticle of water striders. The complex two-level microstructure of the surface, including the smallest microtrichia (200-300 nm wide, 7-9 microm long), was successfully replicated using a two-step moulding technique.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
May 2008
Many species of animals and plants are supplied with diverse attachment devices, in which morphology depends on the species biology and the particular function in which the attachment device is involved. Many functional solutions have evolved independently in different lineages of animals and plants. Since the diversity of such biological structures is huge, there is a need for their classification.
View Article and Find Full Text PDFSexual conflict can produce several evolutionary outcomes, one of which is female-limited trait polymorphism. We examine the African bat bug Afrocimex constrictus (Cimicidae), a species where both sexes are subjected to traumatic intromission from males. We show that males possess female genital structures that in related species ameliorate the costs of traumatic insemination.
View Article and Find Full Text PDFIn Auchenorrhyncha, jumping is achieved by metathoracic muscles which are inserted into the trochanter of the hind leg. The synchronisation of movements of the hind legs is a difficult problem, as the leg extension that produces the jump occurs in less than 1 ms. Even slight asynchrony could potentially result in failure of a jump.
View Article and Find Full Text PDFThe waxy surfaces of three carnivorous plants, Nepenthes ventrata (Nepenthaceae), Brocchinia reducta and Catopsis berteroniana (Bromeliaceae), were compared using scanning electron microscopy (SEM). Their effects on attachment and locomotion of the fly Calliphora vomitoria were studied. The waxy surface of N.
View Article and Find Full Text PDFTwo combined mechanisms on the hornet tarsus are adapted to attachment to the substrate: a friction-based (claws and spines) and an adhesion-based one (arolium). There are two ranges of substrate roughness optimal for attachment, either very smooth or very rough. There is an intermediate range of substrate grains of small but non-zero size, where both of these mechanisms fail.
View Article and Find Full Text PDFArthropod Struct Dev
January 2004
This contribution is the first comparative SEM study of tarsal and pretarsal structures of 18 dermapteran species, including epizoic Hemimeridae, rare Apachyidae, as well as basal Pygidicranidae. Our data reject the apparent uniformity of this taxon and show that representatives of Dermaptera have independently evolved both types of attachment mechanisms: hairy and smooth. Dermaptera possess a wide spectrum of attachment devices: arolia, euplantulae, tarsal surfaces covered with specialised tenent setae and other types of cuticular outgrowths.
View Article and Find Full Text PDFThe elytra-to-body binding mechanism of the flightless rainforest species Tabarus montanus Kaszab (Coleoptera: Tenebrionidea) is described. Previously, studies on this complex character system in tenebrionids have focused mostly on either fully-winged or flightless, desert-dwelling species with a hermetically sealed subelytral cavity. Data presented here show that the rainforest species Ta.
View Article and Find Full Text PDFArthropod Struct Dev
April 2000
Representatives of Dermaptera probably have the most unusual hind wing venation and folding pattern among insects. Both correlate with unusual wing folding mechanics, in which folding is achieved from within the wing and unfolding is done by the cerci. In this account, the hind wings of the earwig Forficula auricularia were studied by means of bright field and fluorescence microscopy.
View Article and Find Full Text PDFArthropod Struct Dev
April 2000
The insect wing membrane is usually covered by scales, hairs, and acanthae, which serve diverse functions, such as species-specific coloration pattern, decrease of wind resistance during flight or decrease of wing wettability. Representatives of Palaeoptera (Odonata and Ephemeroptera) have no hairy structures on the wing membrane, but both its sides are fine-sculptured. In this study, the nature of the wing covering was studied using acoustic microscopy, scanning- and transmission electron microscopy followed by a variety of chemical treatments.
View Article and Find Full Text PDFBased on the structural and experimental studies of more than 300 insect species from different lineages, we have developed and characterized a bioinspired polymer material with the ability of multiple glue-free bonding and debonding. The material surface is covered with a pattern of microstructures, which resembles the geometry of tenent hairs previously described from the feet of flies, beetles, earwigs and other insects. The tape with such a microstructure pattern demonstrates at least two times higher pull-off force per unit apparent contact area compared to the flat polymer.
View Article and Find Full Text PDFJ R Soc Interface
July 2008
To analyse the performance of mushroom-shaped fibrillar adhesive microstructure, its behaviour was studied during different stages of attachment-loading-detachment cycle. Visualizing the evolutions of real contact area of single microfibres, it is shown that the mushroom-shaped geometry of contact elements promotes fast and simple generation of reliable adhesion. The mushroom-shaped geometry seems to transform fibrillar contact elements into passive suction devices and makes them tolerant to overload, thus enhancing their robustness and stability.
View Article and Find Full Text PDFGlue-free reversible adhesion was achieved underwater using a beetle-inspired mushroom-shaped fibrillar microstructure. Structured surfaces reveal a 25% increase in pull-off force when immersed in water and their underwater attachment is 20 times more effective than that of flat surfaces. The van der Waals interaction that underlies the adhesion of the mushroom-shaped fibrillar microstructure is significantly enhanced by a suction effect when underwater.
View Article and Find Full Text PDFSmall wax sculptures on plant surfaces are responsible for a variety of functions, including the maintenance of sability, self-cleaning properties, prevention of insect attachment and reflection of light. Here we report on a method for using recrystallized plant wax crystals on flat technical surfaces for generating micro- and nanopatterned polymers with particular functions. Therefore a more than 4-thousand year old replica technique called the "lost wax technique" has been adapted for reproduction of complex, high aspect ratio surfaces and the large scale reproduction of micro- and nanopatterned surfaces.
View Article and Find Full Text PDFDamselfly females use their ovipositor valves to saw aquatic plants in order to insert their eggs into the plant tissues. Stiffness of the plant substrata is therefore an important parameter for oviposition substrate choice by females. Using a force transducer combined with a motorised micromanipulator, the bending stiffness of the ovipositor at the axial compressional load was studied in seven European damselfly species and compared to the local stiffness of seven preferred plant substrates.
View Article and Find Full Text PDFIn this study we show the influence of surface roughness on gecko adhesion on both the nano- and macroscales. We present experimental data for the force necessary to pull off single spatulae from hard rough substrates and also detail observations on living geckos clinging to various surfaces. Both experiments consistently show that the effective adhesion shows a minimum for a root mean square roughness ranging from 100 to 300nm.
View Article and Find Full Text PDFJ R Soc Interface
August 2007
To characterize the effect of shearing on function of fibrillar adhesive microstructure, friction and shear-related changes in pull-off force of a biomimetic polyvinylsiloxane mushroom-shaped fibrillar adhesive microstructure were studied. In contrast to a control flat surface, which exhibited pronounced stick-slip motion accompanied with high friction, the fibrillar microstructure demonstrated a stable and smooth sliding with a friction coefficient approximately four times lower. The structured contact also manifested zero pull-off force in a sheared state, while the flat surface exhibited highly scattered and unreliable pull-off force when affected by contact shearing.
View Article and Find Full Text PDF