We report on the first realization of photonic crystal structures in 600-nm thick ion-sliced, single-crystalline lithium niobate thin films bonded on a lithium niobate substrate using adhesive polymer benzocyclobutene (BCB). Focused ion beam (FIB) milling is used for fast prototyping of photonic crystal structures with regular cylindrical holes. Unwanted redeposition effects leading to conically shaped holes in lithium niobate are minimized due to the soft BCB layer underneath.
View Article and Find Full Text PDFWe present an advanced high-resolution, compact laser lithography system for fast prototyping of complex integrated optics devices comprising microring resonators and photonic crystal structures. Precise and flexible structuring of photoresist patterns is achieved by combing three linear stages (xyz) for sample positioning and a two-dimensional acousto-optical deflector for laser beam steering and intensity control. A continuous wave diode laser operating at a wavelength of 375 nm is used to illuminate all types of photoresists including SU-8.
View Article and Find Full Text PDFWe report on the production and characterisation of optical microring resonators and optical channel waveguides by using fluorine-ion implantation and planar structuring in lithium niobate. We demonstrate the production of single-mode planar waveguides by low fluence fluorine-ion implantation (?? = 2.5 x10(14) ions/cm(2)) into lithium niobate wafers.
View Article and Find Full Text PDFElectro-optic modulation at lambda=1.5 mum has been demonstrated for the first time to the best of our knowledge in a ridge waveguide phase modulator produced in cubic potassium sodium tantalate niobate thin films epitaxially grown on potassium tantalate substrates exploiting the large quadratic electro-optic Kerr coefficient of R11 = 8.2x10(-17) m(2)/V(2).
View Article and Find Full Text PDFPlanar waveguides in nonlinear optical crystals of Sn(2)P(2)S(6) have been produced by He+ ion implantation. The effective indices of the waveguide have been determined and refractive index profiles have been evaluated for the indices along all three principal axes of the optical indicatrix. The depth of the induced optical barrier is n1 = -0.
View Article and Find Full Text PDF