Publications by authors named "Gopman D"

Ferromagnetic resonance (FMR) is a broadly used dynamical measurement used to characterize a wide range of magnetic materials. Applied research and development on magnetic thin film materials is growing rapidly alongside a growing commercial appetite for magnetic memory and computing technologies. The ability to execute high-quality, fast FMR surveys of magnetic thin films is needed to meet the demanding throughput associated with rapid materials exploration and quality control.

View Article and Find Full Text PDF

Thin ferromagnetic films possessing perpendicular magnetic anisotropy derived from the crystal lattice can deliver the requisite magnetocrystalline anisotropy density for thermally stable magnetic memory and logic devices at the single-digit-nm lateral size. Here, we demonstrate that an epitaxial synthetic antiferromagnet can be formed from L1 FePd, a candidate material with large magnetocrystalline anisotropy energy, through insertion of an ultrathin Ir spacer. Tuning of the Ir spacer thickness leads to synthetic antiferromagnetically coupled FePd layers, with an interlayer exchange field upwards of 0.

View Article and Find Full Text PDF

The effect of oxygen reduction on the magnetic properties of LaFeO (LFO) thin films was studied to better understand the viability of LFO as a candidate for magnetoionic memory. Differences in the amount of oxygen lost by LFO and its magnetic behavior were observed in nominally identical LFO films grown on substrates prepared using different common methods. In an LFO film grown on SrTiO (STO) substrate, the original perovskite film structure was preserved following reduction, and remnant magnetization was only seen at low temperatures.

View Article and Find Full Text PDF

As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA), 1-FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub-5 nm sizes. However, the compatibility requirement of preparing 1-FePd thin films on Si/SiO wafers is still unmet. In this paper, we prepare high-quality 1-FePd and its SAF on Si/SiO wafers by coating the amorphous SiO surface with an MgO(001) seed layer.

View Article and Find Full Text PDF

Nb and its compounds are widely used in quantum computing due to their high superconducting transition temperatures and high critical fields. Devices that combine superconducting performance and spintronic non-volatility could deliver unique functionality. Here we report the study of magnetic tunnel junctions with Nb as the heavy metal layers.

View Article and Find Full Text PDF

Uniform magnetic behavior within arrays of magnetoelectric heterostructures is important for the development of reliable strain-mediated microdevices. Multiple mechanisms may contribute to observed nonuniform magnetization reversal including surface roughness, non-uniform strain, and fabrication induced imperfections. Here, Co/Ni microdisks of 7 µm diameter were produced on both [Pb(MgNb)O]-[PbTiO] with x = 0.

View Article and Find Full Text PDF

Ultrathin Ta/CoFeB/Pt trilayer structures are relevant to a wide range of spintronic applications, from magnetic tunnel junctions to skyrmionics devices. Controlling the perpendicular magnetic anisotropy, Gilbert damping and Dzyaloshinskii-Moriya interaction in the CoFeB layer is key for these applications. We examine the role of sputter gas composition during the Pt overlayer deposition of a Ta/CoFeB/Pt trilayer in Ar, Kr and Xe working gas environments during direct current magnetron sputtering.

View Article and Find Full Text PDF

Materials such as L1 Fe-based alloys with perpendicular magnetic anisotropy derived from crystal structure have the potential to deliver higher thermal stability of magnetic memory elements compared to materials whose anisotropy is derived from surfaces and interfaces. A number of processing parameters enable control of the quality and texture of L1 FePd among them, including substrate, deposition temperature, pressure and seed and buffer layer. The angle of inclination between the substrate and the sputtering target can also impact the texture of L1 crystallization of sputtered Fe-Pd and magnetic properties of the derived thin films.

View Article and Find Full Text PDF

Bulk perpendicular magnetic anisotropy materials are proposed to be a promising candidate for next-generation ultrahigh density and ultralow energy-consumption spintronic devices. In this work, we experimentally investigate the structure, thermal stability, and magnetic properties of FePd thin films seeded by a Ru layer. An -phase Ru layer induces the highly-ordered L1-phase FePd thin films with perpendicular magnetic anisotropy ( ~ 10.

View Article and Find Full Text PDF

Magnetostrictive CoFe films are fully suspended to produce free-standing, clamped-clamped, microbeam resonators. A negative or positive shift in the resonant frequency is observed for magnetic fields applied parallel or perpendicular to the length of the beam, respectively, confirming the magnetoelastic nature of the shift. Notably, the resonance shifts linearly with higher-bias fields oriented perpendicular to the beam's length.

View Article and Find Full Text PDF

We explored the effect of a CoFe wedge inserted as a dusting layer (0.2 nm-0.4 nm thick) at the CoFeB/MgO interface of a sputtered Ta(2 nm)/W(3 nm)/CoFeB(0.

View Article and Find Full Text PDF

Designing and implementing means of locally trapping magnetic beads and understanding the factors underlying the bead capture force are important steps toward advancing the capture-release process of magnetic particles for biological applications. In particular, capturing magnetically labeled cells using magnetic microstructures with perpendicular magnetic anisotropy (PMA) will enable an approach to cell manipulation for emerging lab-on-a-chip devices. Here, a Co (0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated the magnetoelastic behavior of multiferroic heterostructures to create energy-efficient, spin-based materials.
  • They found significant magnetostriction effects at the interfaces of (Co/Ni)/Pb(MgNb)O-PbTiO structures, with saturation magnetostriction depending on the thickness of the nickel layer.
  • The interface effects were over 300% larger than those from the bulk material, suggesting potential for developing low-energy, nanoelectronic devices that utilize both magnetic and ferroelectric properties.
View Article and Find Full Text PDF

When a polarized light beam is incident upon the surface of a magnetic material, the reflected light undergoes a polarization rotation. This magneto-optical Kerr effect (MOKE) has been intensively studied in a variety of ferro- and ferrimagnetic materials because it provides a powerful probe for electronic and magnetic properties as well as for various applications including magneto-optical recording. Recently, there has been a surge of interest in antiferromagnets (AFMs) as prospective spintronic materials for high-density and ultrafast memory devices, owing to their vanishingly small stray field and orders of magnitude faster spin dynamics compared to their ferromagnetic counterparts.

View Article and Find Full Text PDF

An ultimate goal of spintronics is to control magnetism via electrical means. One promising way is to utilize a current-induced spin-orbit torque (SOT) originating from the strong spin-orbit coupling in heavy metals and their interfaces to switch a single perpendicularly magnetized ferromagnetic layer at room temperature. However, experimental realization of SOT switching to date requires an additional in-plane magnetic field, or other more complex measures, thus severely limiting its prospects.

View Article and Find Full Text PDF

In previous work, molecular dynamics simulations based on a first-principles-derived effective Hamiltonian for (PSN), with nearest-neighbor Pb-O divacancy pairs, was used to calculate vs. T, phase diagrams for PSN with: ideal rock-salt type chemical order; nanoscale chemical short-range order; and random chemical disorder. Here, we show that the phase diagrams should include additional regions in which a glassy relaxor-phase (or state) is predicted.

View Article and Find Full Text PDF

We report on the static and dynamic magnetic properties of W/CoFeB/Ta/CoFeB/MgO stacks, where the CoFeB layer is split in two by a 0.3 nm-thick Ta "dusting" layer. A total CoFeB thickness between 1.

View Article and Find Full Text PDF

We present measurements of the static and dynamic properties of polycrystalline iron-gallium films, ranging from 20 nm to 80 nm and sputtered from an FeGa target. Using a broadband ferromagnetic resonance setup in a wide frequency range, perpendicular standing spin-wave resonances were observed with the external static magnetic field applied in-plane. The field corresponding to the strongest resonance peak at each frequency is used to determine the effective magnetization, the -factor and the Gilbert damping.

View Article and Find Full Text PDF

We report the frequency dependence of the ferromagnetic resonance linewidth of the free layer in magnetic tunnel junctions with all perpendicular-to-the-plane magnetized layers. While the magnetic-field-swept linewidth nominally shows a linear growth with frequency in agreement with Gilbert damping, an additional frequency-dependent linewidth broadening occurs that shows a strong asymmetry between the absorption spectra for increasing- and decreasing external magnetic field. Inhomogeneous magnetic fields produced during reversal of the reference and pinned layer complex is demonstrated to be at the origin of the symmetry breaking and the linewidth enhancement.

View Article and Find Full Text PDF

We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure.

View Article and Find Full Text PDF

We report the magnetization reversal behavior of microstructured NiFe rings using magneto-optic indicator film imaging and magnetometry. While the reversal behavior of rings with a symmetric (circular) interior hole agrees with micromagnetic simulations of an onion → vortex → onion transition, we experimentally demonstrate that rings possessing an elliptical hole with an aspect ratio of 2 exhibit complex reversal behavior comprising incoherent domain propagation in the rings. Magneto optic images reveal metastable magnetic configurations that illustrate this incoherent behavior.

View Article and Find Full Text PDF

We present measurements of the exchange stiffness and the exchange constant of a sputtered 80 nm TbDyFe film. Using a broadband ferromagnetic resonance setup in a wide frequency range from 10 GHz to 50 GHz, multiple perpendicular standing spin-wave resonances were observed with the external static magnetic field applied in-plane. The field corresponding to the strongest resonance peak at each frequency is used to determine the effective magnetization, the -factor and the Gilbert damping.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how tuning magnetic and electric properties in magnetoelectric composite heterostructures can enhance applications like energy harvesting and magnetic field sensing.
  • It presents a method to achieve significant reversible changes in magnetic anisotropy through electric field-induced strains in specially engineered magnetostrictive thin films.
  • The findings demonstrate a 90° in-plane rotation of magnetic anisotropy using low electric fields, achieving the highest converse magnetoelectric coupling coefficient in the linear piezoelectric regime, which is stable over a wide temperature range.
View Article and Find Full Text PDF

Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.

View Article and Find Full Text PDF

We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT.

View Article and Find Full Text PDF