This study reports the development of a nanoformulation of diclofenac sodium, a potent non-steroidal anti-inflammatory drug, at its clinical dose, utilizing a FDA approved polymer, hydroxyethyl starch. The study specifically focused on the control of pharmacokinetics, pharmacodynamics, and biodistribution by particle surface functionalization and alteration of excipient levels in the final formulation. Stable diclofenac sodium-loaded hydroxyethyl starch nanoparticles (nanodiclo) of size 170 ± 5 nm and entrapment efficiency 72 ± 3% were prepared.
View Article and Find Full Text PDFIn the present work, 2-Methoxyestradiol [2ME2] loaded PLGA nanoparticles [NPs] were stabilized with Casein or poly(ethylene glycol) [PEG] and evaluated for its cellular interactions, pharmacokinetics and tumour accumulation. Surface stabilized PLGA nanoparticles prepared through a modified emulsion route possessed similar size, surface charge, drug loading and release characteristics. Particle-cell interactions as well as the anti-angiogenesis activity were similar for both nanoformulations in vitro.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2015
The initial interactions of nanoparticles with biomolecules have a great influence on its toxicity, efficacy, biodistribution and clearance. The present work is an attempt to understand the impact of surface charge of polymeric nanoparticles on its plasma protein and cellular interactions. Negative, near-neutral and positively charged poly(lactic-co-glycolic acid) [PLGA] nanoparticles were prepared using casein, poly(vinyl alcohol) and poly(ethylene imine) respectively, as surface stabilizers.
View Article and Find Full Text PDF