Background: Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding.
View Article and Find Full Text PDFProtein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics.
View Article and Find Full Text PDFUrokinase plasminogen activator receptor (uPAR) and the epithelial integrin αvβ6 are thought to individually play critical roles in cancer metastasis. These observations have been highlighted by the recent discovery (by proteomics) of an interaction between these two molecules, which are also both implicated in the epithelial-mesenchymal transition (EMT) that facilitates escape of cells from tissue barriers and is a common signature of cancer metastases. In this study, orthogonal in cellulo and in vitro functional proteomic approaches were used to better characterize the uPAR·αvβ6 interaction.
View Article and Find Full Text PDFIntegrin αvβ6 is an epithelially-restricted heterodimeric transmembrane glycoprotein, known to interact with the urokinase plasminogen activating receptor (uPAR), playing a critical role in cancer progression. While the X-ray crystallographic structures of segments of other integrin heterodimers are known, there is no structural information for the complete αvβ6 integrin to assess its direct interaction with uPAR. We have performed structural analysis of αvβ6·uPAR interactions using model data with docking simulations to pinpoint their interface, in accord with earlier reports of the β-propeller region of integrin α-chain interacting with uPAR.
View Article and Find Full Text PDFProtein Pept Lett
February 2015
Molecular function in cellular processes is governed by protein-protein interactions (PPIs) within biological networks. Selective yet specific association of these protein partners contributes to diverse functionality such as catalysis, regulation, assembly, immunity, and inhibition in a cell. Therefore, understanding the principles of protein-protein association has been of immense interest for several decades.
View Article and Find Full Text PDFProtein heterodimer complexes are often involved in catalysis, regulation, assembly, immunity and inhibition. This involves the formation of stable interfaces between the interacting partners. Hence, it is of interest to describe heterodimer interfaces using known structural complexes.
View Article and Find Full Text PDFUnlabelled: The human immunodeficiency virus type-1 (HIV-1) gp160 (gp120-gp41 complex) trimer envelope (ENV) protein is a potential vaccine candidate for HIV/AIDS. HIV-1 vaccine development has been problematic and charge polarity as well as sequence variation across clades may relate to the difficulties. Further obstacles are caused by sequence variation between blood and brain-derived sequences, since the brain is a separate compartment for HIV-1 infection.
View Article and Find Full Text PDFHetero dimer (different monomers) interfaces are involved in catalysis and regulation through the formation of interface active sites. This is critical in cell and molecular biology events. The physical and chemical factors determining the formation of the interface active sites is often large in numbers.
View Article and Find Full Text PDF