Bis-hexanoyl (R)-1,3-butanediol (BH-BD) is novel ketone ester undergoing development as a food ingredient to achieve nutritional ketosis in humans. Male and female Crl:CD(SD) rats were administered BH-BD twice daily at 9000, 12,000 or 15,000 mg/kg/day, by oral gavage in a 90-day toxicity study with 28-day recovery period; and an interim 28-day phase. Test substance-related early deaths occurred in four females at 15,000 mg/kg/day.
View Article and Find Full Text PDFEpidemiological evidence links polychlorinated biphenyls (PCBs) to skeletal toxicity, however mechanisms whereby PCBs affect bone are poorly studied. In this study, coplanar PCB 126 (5 μmol/kg) or corn oil vehicle was administered to N = 5 and 6 male and female, wild type (WT) or AhR -/- rats via intraperitoneal injection. Animals were sacrificed after 4 weeks.
View Article and Find Full Text PDFSkeletal toxicity has been reported following exposure to polychlorinated biphenyl (PCB) mixtures. However, molecular mechanisms remain poorly understood. We exposed groups of male 4-5-week-old Sprague-Dawley rats to 3,3', 4, 4', 5-pentachlorobiphenyl (PCB 126), a dioxin-like coplanar PCB congener by a single i.
View Article and Find Full Text PDF3,3',4,4',5-pentachlorobiphenyl (PCB126), a dioxin-like PCB, elicits toxicity through a wide array of noncarcinogenic effects, including metabolic syndrome, wasting, and nonalcoholic fatty-liver disease. Previously, we reported decreases in the transcription of several enzymes involved in gluconeogenesis, before the early onset of lipid accumulation. Hence, this study was aimed at understanding the impact of resultant decreases gluconeogenic enzymes on growth, weight, and metabolism in the liver, upon extended exposure.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2018
Polychlorinated biphenyls (PCBs), a group of 209 congeners that differ in the number and position of chlorines on the biphenyl ring, are anthropogenic chemicals that belong to the persistent organic pollutants (POPs). For many years, PCBs have been a topic of interest because of their biomagnification in the food chain and their environmental persistence. PCBs with fewer chlorine atoms, however, are less persistent and more susceptible to metabolic attack, giving rise to chemicals characterized by the addition of one or more hydroxyl groups to the chlorinated biphenyl skeleton, collectively known as hydroxylated PCBs (OH-PCBs).
View Article and Find Full Text PDFThe dioxin-like PCB126 elicits toxicity in various target organs. In rat liver, an alteration in the transcript levels of several genes involved in glucose and fatty acid metabolism provides insights into the origin of its hepatotoxicity. To explore the mechanisms, male Sprague-Dawley rats, fed an AIN-93G diet, were injected with PCB126 (1 or 5 μmol/kg) or corn oil and euthanized after 2 weeks.
View Article and Find Full Text PDF3,3',4,4',5-Pentachlorobiphenyl (PCB126), a dioxin-like polychlorinated biphenyl (PCB) and a potent aryl hydrocarbon receptor (AhR) agonist, is implicated in the disruption of both carbohydrate and lipid metabolism which ultimately leads to wasting disorders, metabolic disease, and nonalcoholic fatty liver disease. However, the mechanisms are unclear. Because liver is the target organ for PCB toxicity and responsible for metabolic homeostasis, we hypothesized that early disruption of glucose and lipid homeostasis contributes to later manifestations such as hepatic steatosis.
View Article and Find Full Text PDFEmerging evidence indicates that persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), are involved in the development of diabetes. Dysfunctional adipocytes play a significant role in initiating insulin resistance. Preadipocytes make up a large portion of adipose tissue and are necessary for the generation of functional mature adipocytes through adipogenesis.
View Article and Find Full Text PDFPotent aryl hydrocarbon receptor agonists like PCB 126 (3,3',4,4',5-pentachlorobiphenyl) cause oxidative stress and liver pathology, including fatty liver. Our question was whether dietary supplementation with N-acetylcysteine (NAC), an antioxidant, can prevent these adverse changes. Male Sprague-Dawley rats were fed a standard AIN-93G diet (sufficient in cysteine) or a modified diet supplemented with 1.
View Article and Find Full Text PDFSeveral clinical studies have reported that an increase in excretion of tryptophan metabolites 3-hydroxyanthranilic acid (3-OHAA), anthranilic acid (AA) and other metabolites in the urine of bladder cancer patients are implicated to play a role in the etiology of bladder cancer; however the mechanisms involved are unknown. The present study compares the genotoxicity of tryptophan metabolites AA and 3-OHAA to cause mutagenesis in vitro. The DNA damage effects of tryptophan metabolites were analyzed using plasmid relaxation assay performed with AA and 3-OHAA at various concentrations between 50μM and 400μM in the presence of plasmid DNA pSP-72.
View Article and Find Full Text PDFTryptophan is metabolized through serotonin, indole, and kynurenine (KN) pathways. Uptake of an excess amount of tryptophan accompanied with vitamin B6 deficiency may result in the accumulation of higher concentrations of metabolites mainly from the KN pathways in the bladder. These metabolites could interact with nitrite to become mutagenic nitrosamines.
View Article and Find Full Text PDF