Publications by authors named "Gopalan V"

Purpose: This study aims to determine the expression of miR-34b-5p in thyroid carcinomas and to investigate the role of miR34b-5p in the modulation of proteins involved in angiogenesis of thyroid carcinoma cells.

Methods: The expressions of miR-34b-5p levels in five cell lines and 65 tissue samples from thyroid carcinomas were examined by real-time polymerase chain reaction. An exogenous miR-34b-5p (mimic) transiently overexpress miR-34b-5p in theses thyroid carcinoma cells.

View Article and Find Full Text PDF

GAEC1 (Gene amplified in esophageal cancer 1) alterations have oncogenic properties in oesophageal squamous cell carcinomas and frequent amplifications of the gene were noted in colorectal adenocarcinomas. However, the subcellular localization and expression of GAEC1 at the protein level have never been reported in human cancer cells. The present study aimed to investigate whether GAEC1 is differentially expressed in different stages of colon cancer and to elucidate its underlying cellular and molecular mechanism in colon cancer progression.

View Article and Find Full Text PDF

A(II)GeTeO (A = Mn, Cd, Pb), new non-centrosymmetric (NCS) honeycomb-layered tellurates, were synthesized and characterized. A(II)GeTeO (A = Mn, Cd, Pb) crystallize in trigonal space group P312 (No. 149) of edge-sharing GeO and TeO octahedra, which form honeycomb-like-layers in the ab-plane with A(II) (A = Mn, Cd, Pb) cations located between the layers.

View Article and Find Full Text PDF

Genetic testing is recommended for patients with phaeochromocytoma (PCC) and paraganglioma (PGL) because of their genetic heterogeneity and heritability. Due to the large number of susceptibility genes associated with PCC/PGL, next-generation sequencing (NGS) technology is ideally suited for carrying out genetic screening of these individuals. New generations of DNA sequencing technologies facilitate the development of comprehensive genetic testing in PCC/PGL at a lower cost.

View Article and Find Full Text PDF

Despite having reliable and excellent diagnostic performances, the currently available messenger RNA (mRNA) detection methods mostly use enzymatic amplification steps of the target mRNA which is generally affected by the sample manipulations, amplification bias and longer assay time. This paper reports an amplification-free electrochemical approach for the sensitive and selective detection of mRNA using a screen-printed gold electrode (SPE-Au). The target mRNA is selectively isolated by magnetic separation and adsorbed directly onto an unmodified SPE-Au.

View Article and Find Full Text PDF

This paper reports the development of a nonenzymatic, amplification-free, and sensitive platform for the detection of microRNA based on a new class of electrocatalytically active superparamagnetic gold-loaded nanoporous iron oxide nanocubes (Au@NPFeONC). The assay showed an excellent detection sensitivity down to 100 fM and specificity towards the analysis of miR-21 in cell lines and tissue samples derived from patients with oesophageal squamous-cell carcinoma (ESCC).

View Article and Find Full Text PDF

The design of new or enhanced functionality in materials is traditionally viewed as requiring the discovery of new chemical compositions through synthesis. Large property enhancements may however also be hidden within already well-known materials, when their structural symmetry is deviated from equilibrium through a small local strain or field. Here, the discovery of enhanced material properties associated with a new metastable phase of monoclinic symmetry within bulk KNbO is reported.

View Article and Find Full Text PDF

Autoantibodies are produced against tumor associated antigens (TAAs) long before the appearance of any symptoms and thus can serve as promising, non-invasive biomarkers for early diagnosis of cancer. Current conventional methods for autoantibody detection are highly invasive and mostly provide diagnosis in the later stages of cancer. Herein we report a new electrochemical method for early detection of p53 autoantibodies against colon cancer using a strategy that combines the strength of gold-loaded nanoporous iron oxide nanocube (Au@NPFeONC)-based capture and purification while incorporating the inherent simplicity, inexpensive, and portable nature of the electrochemical and naked-eye colorimetric readouts.

View Article and Find Full Text PDF

Oesophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers, owing to a high frequency of metastasis. However, little is known about the genomic landscape of metastatic ESCC. To identify the genetic alterations that underlie ESCC metastasis, whole-exome sequencing was performed for 41 primary tumours and 15 lymph nodes (LNs) with metastatic ESCCs.

View Article and Find Full Text PDF

Development of simple and inexpensive method for the analysis of gene-specific DNA methylation is important for the diagnosis and prognosis of patients with cancer. Herein, we report a relatively simple and inexpensive electrochemical method for the sensitive and selective detection of gene-specific DNA methylation in oesophageal cancer. The underlying principle of the method relies on the affinity interaction between DNA bases and unmodified gold electrode.

View Article and Find Full Text PDF

Objectives: The role and underlying mechanism of miR-186-5p in colorectal cancer remain unknown. The present study aims to examine the various cellular effects of miR-186-5p in the carcinogenesis of colorectal cancer. Also, the interacting targets and association of clinicopathological factors with miR-186-5p expression in patients with colorectal cancer were analysed.

View Article and Find Full Text PDF

Tumor-derived exosomes have emerged as promising cancer biomarkers due to their unique composition and functions. Herein, we report a stripping voltammetric immunoassay for the electrochemical detection of disease-specific exosomes using quantum dots as signal amplifiers. The assay involves three subsequent steps where bulk exosome populations are initially magnetically captured on magnetic beads by a generic tetraspanin antibody (e.

View Article and Find Full Text PDF

Ionic liquids (ILs) are used in lignocellulosic biomass (LCB) pretreatment because of their ability to disrupt the extensive hydrogen-bonding network in cellulose and hemicellulose, and thereby decrease LCB recalcitrance to subsequent enzymatic degradation. However, this approach necessitates the development of cellulases and hemicellulases that can tolerate ∼20% (w/v) IL, an amount that either co-precipitates with the sugar polymers after the initial pretreatment or is typically used in single-pot biomass deconstructions. By investigating the secretomes from 4 marine-derived fungal endophytes, we identified a β-xylosidase derived from Trichoderma harzianum as the most promising in terms of tolerating 1-ethyl-3-methylimidazolium-dimethyl phosphate (EMIM-DMP), an IL.

View Article and Find Full Text PDF

RNase P is primarily responsible for the 5΄ maturation of transfer RNAs (tRNAs) in all domains of life. Archaeal RNase P is a ribonucleoprotein made up of one catalytic RNA and five protein cofactors including L7Ae, which is known to bind the kink-turn (K-turn), an RNA structural element that causes axial bending. However, the number and location of K-turns in archaeal RNase P RNAs (RPRs) are unclear.

View Article and Find Full Text PDF

We report a simple colorimetric (naked-eye) and electrochemical method for the rapid, sensitive and specific quantification of global methylation levels using only 25 ng of input DNA. Our approach utilises a three-step strategy; (i) initial adsorption of the extracted, purified and denatured bisulfite-treated DNA on a screen-printed gold electrode (SPE-Au), (ii) immuno-recognition of methylated DNA using a horseradish peroxidase (HRP)-conjugated methylcytosine (HRP-5mC) antibody and (iii) subsequent colorimetric detection by the enzymatic oxidation of 3,3',5,5'-tetramethylbenzidin (TMB)/HO which generated a blue-coloured product in the presence of methylated DNA and HRP-5mC immunocomplex. As TMB is electroactive, it also produces detectable amperometric current at +150 mV versus a Ag pseudo-reference electrode (electrochemical detection).

View Article and Find Full Text PDF

This study aims to examine the expression profiles of the miR-183 cluster (miR-96/182/183) in pheochromocytoma. Pheochromocytoma tissues were prospectively collected from 50 patients with pheochromocytoma. Expression of miR-183 cluster members and SDHB protein expression were analyzed in these tissues by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively.

View Article and Find Full Text PDF

Mott insulating oxides and their heterostructures have recently been identified as potential photovoltaic materials with favorable absorption properties and an intrinsic built-in electric field that can efficiently separate excited electron-hole pairs. At the same time, they are predicted to overcome the Shockley-Queisser limit due to strong electron-electron interaction present. Despite these premises a high concentration of defects commonly observed in Mott insulating films acting as recombination centers can derogate the photovoltaic conversion efficiency.

View Article and Find Full Text PDF

Despite the excellent diagnostic applications of the current conventional immunoassay methods such as ELISA, immunostaining and Western blot for FAM134B detection, they are laborious, expensive and required a long turnaround time. Here, we report an electrochemical approach for rapid, sensitive, and specific detection of FAM134B protein in biological (colon cancer cell extracts) and clinical (serum) samples. The approach utilises a differential pulse voltammetry (DPV) in the presence of the [Fe(CN)] redox system to quantify the FAM134B protein in a two-step strategy that involves (i) initial attachment of FAM134B antibody on the surface of extravidin-modified screen-printed carbon electrode, and (ii) subsequent detection of FAM134B protein present in the biological/clinical samples.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are cancer cells that are responsible for initiation, progression, metastasis, and recurrence in cancer. The aim of this review was to analyze the markers for identifying of CSCs in colorectal carcinoma, as well as the prognostic and therapeutic implications of these markers in the cancer. CSCs are insensitive to the current drug regimens.

View Article and Find Full Text PDF

Cancer cells exhibit alterations in many cellular processes, including oxygen sensing and energy metabolism. Glycolysis in non-oxygen condition is the main energy production process in cancer rather than mitochondrial respiration as in benign cells. Genetic and epigenetic alterations of Krebs cycle enzymes favour the shift of cancer cells from oxidative phosphorylation to anaerobic glycolysis.

View Article and Find Full Text PDF

Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ mouse melanoma cells into syngeneic C57BL/6N mice that express red fluorescent protein in their mitochondria.

View Article and Find Full Text PDF

MicroRNA-498 plays a crucial role in progression of many carcinomas. The signaling pathways by which miR-498 modulates carcinogenesis are still unknown. Also, miR-498-associated molecular pathogenesis has never been studied in esophageal squamous cell carcinoma (ESCC).

View Article and Find Full Text PDF

Salmonella can utilize fructose-asparagine (F-Asn), a naturally occurring Amadori product, as its sole carbon and nitrogen source. Conversion of F-Asn to the common intermediates glucose-6-phosphate, aspartate, and ammonia was predicted to involve the sequential action of an asparaginase, a kinase, and a deglycase. Mutants lacking the deglycase are highly attenuated in mouse models of intestinal inflammation owing to the toxic build-up of the deglycase substrate.

View Article and Find Full Text PDF

One synthetic modality for materials discovery proceeds by forming mixtures of two or more compounds. In transition metal oxides (TMOs), chemical substitution often obeys Vegard's principle, and the resulting structure and properties of the derived phase follow from its components. A change in the assembly of the components into a digital nanostructure, however, can stabilize new polymorphs and properties not observed in the constituents.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5br0de3m4vooqkn6n42umsvvjogb74ia): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once