Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina.
View Article and Find Full Text PDFRetinal detachment (RD) is a neurodegenerative blinding disease caused by plethora of clinical conditions. RD is characterized by the physical separation of retina from the underlying retinal pigment epithelium (RPE), eventually leading to photoreceptor cell death, inflammation, and vision loss. Albeit the activation of complement plays a critical role in the pathogenesis of RD, the retinal cellular source for complement production remains elusive.
View Article and Find Full Text PDFMicroglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development.
View Article and Find Full Text PDFLate-stage dry age-related macular degeneration (AMD) or geographic atrophy (GA) is an irreversible blinding condition characterized by degeneration of retinal pigment epithelium (RPE) and the associated photoreceptors. Clinical and genetic evidence supports a role for dysfunctional lipid processing and accumulation of harmful oxidized lipids in the pathogenesis of GA. Using an oxidized low-density lipoprotein (ox-LDL)-induced RPE death assay, we screened and identified sterically-hindered phenol compounds with potent protective activities for RPE.
View Article and Find Full Text PDFAbnormal cholesterol/lipid homeostasis is linked to neurodegenerative conditions such as age-related macular degeneration (AMD), which is a leading cause of blindness in the elderly. The most prevalent form, termed "dry" AMD, is characterized by pathological cholesterol accumulation beneath the retinal pigment epithelial (RPE) cell layer and inflammation-linked degeneration in the retina. We show here that the cholesterol-regulating microRNA miR-33 was elevated in the RPE of aging mice.
View Article and Find Full Text PDFPurpose: Accumulation of oxidized phospholipids/lipoproteins with age is suggested to contribute to the pathogenesis of AMD. We investigated the effect of oxidized LDL (ox-LDL) on human RPE cells.
Methods: Primary human fetal RPE (hf-RPE) and ARPE-19 cells were treated with different doses of LDL or ox-LDL.
Purpose: To evaluate the mechanism of tamoxifen-induced cell death in human cultured RPE cells, and to investigate concurrent cell death mechanisms including pyroptosis, apoptosis, and necroptosis.
Methods: Human RPE cells were cultured until confluence and treated with tamoxifen; cell death was measured by detecting LDH release. Tamoxifen-induced cell death was further confirmed by 7-aminoactinomycin D (7-AAD) and annexin V staining.
Pathologies of retinal blood vessels are among the major causes of blindness worldwide. A key cell type that regulates retinal vascular development is the astrocyte. Generated extrinsically to the retina, astrocytes migrate into the retina through the optic nerve head.
View Article and Find Full Text PDFJ Ophthalmic Vis Res
October 2012
Retinal vasculature related pathologies account for a large proportion of global blindness. Choroidal neovascularization accompanying age-related macular degeneration is the largest cause of blindness in people over the age of 65 years, proliferative diabetic retinopathy is the main cause of acquired blindness in working adults, and retinopathy of prematurity (ROP) is the leading cause of acquired blindness in children. Given the great success in treating the first category of these conditions with anti-vascular endothelial growth factor (anti-VEGF) therapy, there is understandably considerable interest to employ this strategy to other retinal vascular disorders.
View Article and Find Full Text PDF