Publications by authors named "Gopal Subramaniam"

Purpose: To evaluate the effectiveness of combined Tranexamic acid (TXA) and dexamethasone (DEX) in total hip and knee arthroplasty.

Methods: PUBMED, EMBASE, MEDLINE and CENTRAL database were systematically searched for randomized studies that utilized TXA and DEX administration of TXA in THA or TKA.

Results: A total of three randomized studies enrolling 288 patients were eligible for qualitative and quantitative analysis.

View Article and Find Full Text PDF

Human cathepsin B is a cysteine-dependent protease whose roles in both normal and diseased cellular states remain yet to be fully delineated. This is primarily due to overlapping substrate specificities and lack of unambiguously annotated physiological functions. In this work, a selective, cell-permeable, clickable and tagless small molecule cathepsin B probe, KDA-1, is developed and kinetically characterized.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase 1 (PARP1), a widely explored anticancer drug target, plays an important role in single-strand DNA break repair processes. High-throughput virtual screening (HTVS) of a Maybridge small molecule library using the PARP1-benzimidazole-4-carboxamide co-crystal structure and pharmacophore model led to the identification of eleven compounds. These compounds were evaluated using recombinant PARP1 enzyme assay that resulted in the acquisition of three PARP1 inhibitors: 3 (IC = 12 μM), 4 (IC = 5.

View Article and Find Full Text PDF

A series of 2,4-disubstituted 1H-1-benzazepines, 2a-d, 4, and 6, were studied, varying both the substituents at C2 and C4 and at the nitrogen atom. The conformational inversion (ring-flip) and nitrogen-atom inversion (N-inversion) energetics were studied by variable-temperature NMR spectroscopy and computations. The steric bulk of the nitrogen-atom substituent was found to affect both the conformation of the azepine ring and the geometry around the nitrogen atom.

View Article and Find Full Text PDF

An auto-tandem palladium catalysis from halogen-substituted isoxazoles and Michael acceptors is described. It involves two mechanistically distinct palladium-catalyzed reactions, a Heck reaction and a rearrangement, leading to 2-azafluorenones. It is the first example of palladium-catalyzed ring opening of isoxazoles and rearrangement of the β-imino ketone ring-opening product.

View Article and Find Full Text PDF

A hybrid-design approach is undertaken to develop a highly potent and selective inhibitor of human cathepsin L. Studies involving human breast carcinoma MDA-MB-231 cells establish that this inhibitor can successfully block intracellular cathepsin L activity, and retard the cell-migratory potential of these highly metastatic cells.

View Article and Find Full Text PDF

A synthesis of iodo-substituted dibenzocyclohepten-5-ones by the iodine monochloride (or iodine)-induced intramolecular 7-endo-dig cyclization of 1-([1,1'-biphenyl]-2-yl)alkynones is reported. Detailed investigations on the substituent effects during the electrophilic iodocyclization of the alkynones show that they play a crucial role in determining the reaction pathways of the cyclization. By modifying the substitution pattern on the alkynone substrates, the cyclization takes place regioselectively, leading to either dibenzocyclohepten-5-ones, via a 7-endo-dig cyclization, or spiroconjugated compounds, via a 6-endo-dig cyclization.

View Article and Find Full Text PDF

Certain 2-aryl-3H-1-benzazepines are conformationally mobile on the NMR time scale. Variable-temperature NMR experiments bolstered by calculations indicate that alkylation of the azepine ring will slow the interconversion of conformational enantiomers markedly. DFT studies show that, while the substitution patterns of the aryl groups at C2 and C4 do not exert large effects on the rate of enantiomerization, alkylation at C5 slows it appreciably.

View Article and Find Full Text PDF

Cysteine cathepsins are an important class of enzymes that coordinate a variety of important cellular processes, and are implicated in various types of human diseases. However, small molecule inhibitors that are cell-permeable and non-peptidyl in nature are scarcely available. Herein the synthesis and development of sulfonyloxiranes as covalent inhibitors of cysteine cathepsins are reported.

View Article and Find Full Text PDF

Generation of reactive oxygen species plays a pivotal role in the development of cardiovascular diseases. The present study describes the effects of the methanolic extract of Phoebe grandis (MPG) stem bark on reactive oxygen species-induced endothelial dysfunction in vitro. Endothelium-dependent (acetylcholine, ACh) and -independent relaxation (sodium nitroprusside, SNP) was investigated from isolated rat aorta of Sprague-Dawley (SD) in the presence of the β-NADH (enzymatic superoxide inducer) and MPG extract.

View Article and Find Full Text PDF

The effect of acidosis on insulin-induced relaxation was studied in thoracic aortic rings (from Wistar-Kyoto (WKY) rats) with (+ED) or without (-ED) endothelium. The rings were mounted in normal (pH 7.4) or acidotic (pH 7.

View Article and Find Full Text PDF

We describe the conformation and stereospecific 1H and 13C chemical shift assignments of longifolene 1 and its penultimate precursor 2 through the combined use of ab initio calculations and experimental NMR techniques. The predicted stable conformation for both compounds was similar and adopts a twisted chair conformation at the seven-membered ring where C4 lies on top of the exocyclic double bond. The calculated chemical shifts for the stable conformation agree well with the experimental values.

View Article and Find Full Text PDF

We have previously shown that glycosphingolipid analogs are internalized primarily via caveolae in various cell types. This selective internalization was not dependent on particular carbohydrate headgroups or sphingosine chain length. Here, we examine the role of sphingosine structure in the endocytosis of BODIPYtrade mark-tagged lactosylceramide (LacCer) analogs via caveolae.

View Article and Find Full Text PDF

[structure: see text] To examine the possibility of using squaric acid as a scaffold for organizing phenyl rings in a cofacial orientation, we undertook an investigation of the conformational preferences of secondary and tertiary N-phenylsquaramides. In secondary squaramides, the extended ZZ conformation is preferred, while in the N-methyl derivative, the folded EE conformation with cofacial phenyl rings is preferred. This conformational switch is likely driven by a combination of steric and electronic factors.

View Article and Find Full Text PDF