Background: Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity.
View Article and Find Full Text PDFMicroglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD.
View Article and Find Full Text PDFThe purpose of this study was to examine whether myeloid dendritic cells (mDCs) from patients with multiple sclerosis (MS) and healthy controls (HCs) become similarly tolerogenic when exposed to IL-27 as this may represent a potential mechanism of autoimmune dysregulation. Our study focused on natural mDCs that were isolated from HCs and MS patient peripheral blood mononuclear cells (PBMCs). After a 24-h treatment with IL-27 ± lipopolysaccharide (LPS), the mDCs were either harvested to identify IL-27-regulated gene expression or co-cultured with naive T-cells to measure how the treated DC affected T-cell proliferation and cytokine secretion.
View Article and Find Full Text PDFTransforming growth factor β (TGF-β) is critical to the maintenance of intestinal immune homeostasis. Here, we present techniques for analyzing Smad molecules downstream of TGF-β receptor signaling in dextran-sulfate-sodium-induced colitic mice. We describe colitis induction, cell isolation, and flow cytometric cell sorting of dendritic cells and T cells.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
View Article and Find Full Text PDFMouse Ly49CD8 regulatory T cells (Tregs) can subdue autoreactive CD4 T cells to suppress autoimmunity. Recently, Li et al. demonstrated that killer-cell immunoglobulin-like receptor (KIR)CD8 T cells are the human equivalent of Ly49CD8 regulatory T cells and kill pathogenic CD4 T cells, which can be increased in certain human autoimmune diseases and viral infections.
View Article and Find Full Text PDFA disequilibrium between immunosuppressive Tregs and inflammatory IL-17-producing Th17 cells is a hallmark of autoimmune diseases, including multiple sclerosis (MS). However, the molecular mechanisms underlying the Treg and Th17 imbalance in CNS autoimmunity remain largely unclear. Identifying the factors that drive this imbalance is of high clinical interest.
View Article and Find Full Text PDFSignal transduction and activator of transcription 3 (STAT3) is a key transcription factor implicated in the pathogenesis of kidney fibrosis. Although Stat3 deletion in tubular epithelial cells is known to protect mice from fibrosis, vFoxd1 cells remains unclear. Using Foxd1-mediated Stat3 knockout mice, CRISPR, and inhibitors of STAT3, we investigate its function.
View Article and Find Full Text PDFMyeloid suppressor cells promote tumor growth by a variety of mechanisms which are not fully characterized. We identified myeloid cells (MCs) expressing the latency-associated peptide (LAP) of TGF-β on their surface and LAP MCs that stimulate Foxp3 Tregs while inhibiting effector T cell proliferation and function. Blocking TGF-β inhibits the tolerogenic ability of LAP MCs.
View Article and Find Full Text PDFThe intestinal mucosa constitutes an environment of closely regulated immune cells. Dendritic cells (DC) interact with the gut microbiome and antigens and are important in maintaining gut homeostasis. Here, we investigate DC transcriptome, phenotype and function in five anatomical locations of the gut lamina propria (LP) which constitute different antigenic environments.
View Article and Find Full Text PDFChronic inflammation can drive tumor development. Here, we have identified microRNA-146a (miR-146a) as a major negative regulator of colonic inflammation and associated tumorigenesis by modulating IL-17 responses. MiR-146a-deficient mice are susceptible to both colitis-associated and sporadic colorectal cancer (CRC), presenting with enhanced tumorigenic IL-17 signaling.
View Article and Find Full Text PDFIL-17-producing Th17 cells are implicated in the pathogenesis of rheumatoid arthritis (RA) and TNF-α, a proinflammatory cytokine in the rheumatoid joint, facilitates Th17 differentiation. Anti-TNF therapy ameliorates disease in many patients with rheumatoid arthritis (RA). However, a significant proportion of patients do not respond to this therapy.
View Article and Find Full Text PDFProgrammed death 1 (PD1) has emerged as a major inhibitor of antitumor T cells, and anti-PD1 therapies have demonstrated clinical efficacy in multiple cancers. However, the impact of PD1 on other immune cells had remained unclear. A recent study by Strauss et al.
View Article and Find Full Text PDFInflammation in the central nervous system (CNS) has been linked to demyelination and remyelination. Using zebrafish and mouse models of demyelination and remyelination, Cunha et al. now describe a novel role for myeloid differentiation factor 88 (MyD88) signaling in supporting remyelination by promoting myeloid cell-mediated inflammatory responses via TNF-α, which are essential for phagocytic myelin debris clearance and for oligodendrogenesis.
View Article and Find Full Text PDFSmad7, a negative regulator of TGF-β signaling, has been implicated in the pathogenesis and treatment of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC). Here, we found that Smad7 mediates intestinal inflammation by limiting the PDL2/1-PD1 axis in dendritic cells (DCs) and CD4T cells. Smad7 deficiency in DCs promotes TGF-β responsiveness and the co-inhibitory molecules PDL2/1 on DCs, and it further imprints T cell-PD1 signaling to promote Treg differentiation.
View Article and Find Full Text PDFRegulatory T cells (T) promote cancer by suppressing antitumor immune responses. We found that anti-LAP antibody, which targets the latency-associated peptide (LAP)/transforming growth factor-β (TGF-β) complex on T and other cells, enhances antitumor immune responses and reduces tumor growth in models of melanoma, colorectal carcinoma, and glioblastoma. Anti-LAP decreases LAP T, tolerogenic dendritic cells, and TGF-β secretion and is associated with CD8 T cell activation.
View Article and Find Full Text PDFIL-9-producing Th9 cells are a novel subset of T helper cells that develop independently of other T helper subsets. Th9 cells have been implicated in the pathogenesis of allergic asthma and autoimmunity, while also serving as critical effector T cells in mediating antitumor immune responses. Concomitant presence of TGF-β and IL-4 lead to the differentiation of naïve CD4 T cells towards the Th9 phenotype.
View Article and Find Full Text PDFExisting therapies for inflammatory bowel disease that are based on broad suppression of inflammation result in variable clinical benefit and unwanted side effects. A potential therapeutic approach for promoting immune tolerance is the in vivo induction of regulatory T cells (Tregs). Here we report that activation of the aryl hydrocarbon receptor using the non-toxic agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) induces human Tregs in vitro that suppress effector T cells through a mechanism mediated by CD39 and Granzyme B.
View Article and Find Full Text PDFMicroRNAs are a class of evolutionarily conserved, short non-coding RNAs that post-transcriptionally modulate the expression of multiple target genes. They are implicated in almost every biological process, including pathways involved in immune homeostasis, such as immune cell development, central and peripheral tolerance, and T helper cell differentiation. Alterations in miRNA expression and function can lead to major dysfunction of the immune system and mediate susceptibility to autoimmune disease.
View Article and Find Full Text PDFMethods Mol Biol
October 2016
Toll-like receptors (TLR), a family of pattern-recognition receptors (PRRs) stimulated by pathogen-associated molecular patterns (PAMPs), generate antigen-triggered innate and adaptive immune responses. Recent studies have indicated that several small, regulatory RNAs, called microRNAs (miRNas), are induced by TLR activation in immune cells and that many microRNAs can control the inflammatory process and response to infection by positively or negatively regulating TLR signaling. Among these miRNAs, aberrant microRNA-155 (miR-155) has been implicated in diverse immune processes including the pathogenesis of several autoimmune diseases and cancer.
View Article and Find Full Text PDFBackground: Fingolimod (FTY720), the first oral treatment for multiple sclerosis (MS), blocks immune cell trafficking and prevents disease relapses by downregulation of sphingosine-1-phosphate receptor. We determined the effect of FTY720 on human T cell activation and effector function.
Methods: T cells from MS patients and healthy controls were isolated to measure gene expression profiles in the presence or absence of FTY720 using nanostring and quantitative real-time polymerase chain reaction (qPCR).
Seasonal changes in disease activity have been observed in multiple sclerosis, an autoimmune disorder that affects the CNS. These epidemiological observations suggest that environmental factors influence the disease course. Here, we report that melatonin levels, whose production is modulated by seasonal variations in night length, negatively correlate with multiple sclerosis activity in humans.
View Article and Find Full Text PDF