Obesity is a chronic disease that contributes to the development of insulin resistance, type 2 diabetes (T2D), and cardiovascular risk. Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) co-agonism provide an improved therapeutic profile in individuals with T2D and obesity when compared with selective GLP-1R agonism. Although the metabolic benefits of GLP-1R agonism are established, whether GIPR activation impacts weight loss through peripheral mechanisms is yet to be fully defined.
View Article and Find Full Text PDFExcessive cytosolic calcium accumulation contributes to muscle degeneration in Duchenne muscular dystrophy (DMD). Sarco/endoplasmic reticulum calcium ATPase (SERCA) is a sarcoplasmic reticulum (SR) calcium pump that actively transports calcium from the cytosol into the SR. We previously showed that adeno-associated virus (AAV)-mediated SERCA2a therapy reduced cytosolic calcium overload and improved muscle and heart function in the murine DMD model.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium.
View Article and Find Full Text PDFSympathetic nerves co-develop with their target organs and release neurotransmitters to stimulate their functions after maturation. Here, we provide the molecular mechanism that during sweat gland morphogenesis, neurotransmitters released from sympathetic nerves act first to promote sweat duct elongation via norepinephrine and followed by acetylcholine to specify sweat gland stem cell fate, which matches the sequence of neurotransmitter switch. Without neuronal signals during development, the basal cells switch to exhibit suprabasal (luminal) cell features.
View Article and Find Full Text PDFBackground: Obesity induces cardiomyopathy characterized by hypertrophy and diastolic dysfunction. Whereas mitophagy mediated through an Atg7 (autophagy related 7)-dependent mechanism serves as an essential mechanism to maintain mitochondrial quality during the initial development of obesity cardiomyopathy, Rab9 (Ras-related protein Rab-9A)-dependent alternative mitophagy takes over the role during the chronic phase. Although it has been postulated that DRP1 (dynamin-related protein 1)-mediated mitochondrial fission and consequent separation of the damaged portions of mitochondria are essential for mitophagy, the involvement of DRP1 in mitophagy remains controversial.
View Article and Find Full Text PDFPolyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue.
View Article and Find Full Text PDFBackground Cardiomyopathy is a leading health threat in Duchenne muscular dystrophy (DMD). Cytosolic calcium upregulation is implicated in DMD cardiomyopathy. Calcium is primarily removed from the cytosol by the sarcoendoplasmic reticulum calcium ATPase (SERCA).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2022
Duchenne muscular dystrophy (DMD) is an inherited muscle wasting disease. Metabolic impairments and oxidative stress are major secondary mechanisms that severely worsen muscle function in DMD. Here, we sought to determine whether germline reduction or ablation of sarcolipin (SLN), an inhibitor of sarco/endoplasmic reticulum (SR) Ca ATPase (SERCA), improves muscle metabolism and ameliorates muscle pathology in the mouse model of DMD.
View Article and Find Full Text PDFBacillus velezensis is widely known for its inherent biosynthetic potential to produce a wide range of bio-macromolecules and secondary metabolites, including polyketides (PKs) and siderophores, as well as ribosomally and non-ribosomally synthesized peptides. In the present study, we aimed to investigate the bio-macromolecules, such as proteins and peptides of Bacillus velezensis strains, namely A6 and P42 by whole-cell sequencing and highlighted the potential application in controlling phytopathogens. The bioactive compounds, specifically secondary metabolites, were characterized by whole-cell protein profiling, Thin-Layer Chromatography, Infra-Red Spectroscopy, Nuclear Magnetic Resonance, Gas Chromatograph and Electro Spray Liquid Chromatography.
View Article and Find Full Text PDFFibrosis is a hallmark of heart disease independent of etiology and is thought to contribute to impaired cardiac dysfunction and development of heart failure. However, the underlying mechanisms that regulate the differentiation of fibroblasts to myofibroblasts and fibrotic responses remain incompletely defined. As a result, effective treatments to mitigate excessive fibrosis are lacking.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2021
Sarcolipin (SLN) is an inhibitor of sarco/endoplasmic reticulum (SR) Ca-ATPase (SERCA) and expressed at high levels in the ventricles of animal models for and patients with Duchenne muscular dystrophy (DMD). The goal of this study was to determine whether the germline ablation of SLN expression improves cardiac SERCA function and intracellular Ca (Ca) handling and prevents cardiomyopathy in the mouse model of DMD. Wild-type, , SLN-haploinsufficient (), and SLN-deficient () mice were used for this study.
View Article and Find Full Text PDFLoss of dystrophin leads to Duchenne muscular dystrophy (DMD). A pathogenic feature of DMD is the significant elevation of cytosolic calcium. Supraphysiological calcium triggers protein degradation, membrane damage, and eventually muscle death and dysfunction.
View Article and Find Full Text PDFEndophytes confer unique ecological advantages to their host plants. In this study, we have characterized the diversity of endophytic consortia associated with the GPU-28 (GPU) and Udurumallige (UM) finger millet varieties, which are resistant and susceptible to the blast disease, respectively. Whole genome metagenome sequencing of GPU and UM helped to identify 1029 species (includes obligate endophytes) of microbiota.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2019
Reduction in the expression of sarcolipin (SLN), an inhibitor of sarco(endo)plasmic reticulum (SR) Ca-ATPase (SERCA), ameliorates severe muscular dystrophy in mice. However, the mechanism by which SLN inhibition improves muscle structure remains unclear. Here, we describe the previously unknown function of SLN in muscle differentiation in Duchenne muscular dystrophy (DMD).
View Article and Find Full Text PDFBackground: Proper dynamics of RNA polymerase II, such as promoter recruitment and elongation, are essential for transcription. PGC-1α (peroxisome proliferator-activated receptor [PPAR]-γ coactivator-1α), also termed PPARGC1a, is a transcriptional coactivator that stimulates energy metabolism, and PGC-1α target genes are downregulated in the failing heart. However, whether the dysregulation of polymerase II dynamics occurs in PGC-1α target genes in heart failure has not been defined.
View Article and Find Full Text PDFMarine seaweeds contain a valuable source of functional bioactive polysaccharide and it plays main role for effective anticancer activity. The structural feature of SPs was studied through FT-IR and H NMR spectra analysis. The isolated SPs from A.
View Article and Find Full Text PDFSarcolipin (SLN) is an inhibitor of the sarco/endoplasmic reticulum (SR) Ca ATPase (SERCA) and is abnormally elevated in the muscle of Duchenne muscular dystrophy (DMD) patients and animal models. Here we show that reducing SLN levels ameliorates dystrophic pathology in the severe dystrophin/utrophin double mutant (mdx:utr ) mouse model of DMD. Germline inactivation of one allele of the SLN gene normalizes SLN expression, restores SERCA function, mitigates skeletal muscle and cardiac pathology, improves muscle regeneration, and extends the lifespan.
View Article and Find Full Text PDFBackground: In general, Ras proteins are thought to promote cardiac hypertrophy, an important risk factor for cardiovascular disease and heart failure. However, the contribution of different Ras isoforms has not been investigated. The objective of this study was to define the role of H- and K-Ras in modulating stress-induced myocardial hypertrophy and failure.
View Article and Find Full Text PDFThe functional importance of threonine 5 (T5) in modulating the activity of sarcolipin (SLN), a key regulator of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pump was studied using a transgenic mouse model with cardiac specific expression of threonine 5 to alanine mutant SLN (SLNT5A). In these transgenic mice, the SLNT5A protein replaces the endogenous SLN in atria, while maintaining the total SLN content. The cardiac specific expression of SLNT5A results in severe cardiac structural remodeling accompanied by bi-atrial enlargement.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2015
Inhibition of β-adrenergic receptor (β-AR) signaling is one of the most common therapeutic approaches for patients with arrhythmias. Adenylyl cyclase (AC) is the key enzyme responsible for transducing β-AR stimulation to increases in cAMP. The two major AC isoforms in the heart are types 5 and 6.
View Article and Find Full Text PDFRecent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically.
View Article and Find Full Text PDFBackground: There is currently no therapy proven to attenuate left ventricular (LV) dilatation and dysfunction in volume overload induced by isolated mitral regurgitation (MR). To better understand molecular signatures underlying isolated MR, we performed LV gene expression analyses and overlaid regulated genes into ingenuity pathway analysis in patients with isolated MR.
Methods And Results: Gene arrays from LV tissue of 35 patients, taken at the time of surgical repair for isolated MR, were compared with 13 normal controls.
Xanthine oxidase (XO) is increased in human and rat left ventricular (LV) myocytes with volume overload (VO) of mitral regurgitation and aortocaval fistula (ACF). In the setting of increased ATP demand, XO-mediated ROS can decrease mitochondrial respiration and contractile function. Thus, we tested the hypothesis that XO inhibition improves cardiomyocyte bioenergetics and LV function in chronic ACF in the rat.
View Article and Find Full Text PDFAbnormal intracellular Ca(2+) handling is an important factor in the progressive functional decline of dystrophic muscle. In the present study, we investigated the function of sarco(endo)plasmic reticulum (SR) Ca(2+) ATPase (SERCA) in various dystrophic muscles of mouse models of Duchenne muscular dystrophy. Our studies show that the protein expression of sarcolipin, a key regulator of the SERCA pump is abnormally high and correlates with decreased maximum velocity of SR Ca(2+) uptake in the soleus, diaphragm and quadriceps of mild (mdx) and severe (mdx:utr-/-) dystrophic mice.
View Article and Find Full Text PDF