We report cadmium-free, biocompatible (Zn)CuInS(2) quantum dots with long fluorescence lifetimes as superior bioimaging probes using time-gated detection to suppress cell autofluorescence and improve the signal : background ratio by an order of magnitude. These results will be important for developing non-toxic fluorescence imaging probes for ultrasensitive biomedical diagnostics.
View Article and Find Full Text PDFIn the present paper the method of synthesis and characterization of a novel organic dyad, 3-(1-Methoxy-3,4-dihydro-naphthalyn-2-yl-)-1-p-chlorophenyl propenone, have been reported. In this paper our main thrust is to fabricate new hybrid nanocomposites by combining the organic dyad with different noble metals, semiconductor nanoparticle and noble metal-semiconductor core/shell nanocomposites. In this organic dyad, donor part is 1-Methoxy-3, 4-dihydro-naphthalen-2-carboxaldehyde with the acceptor p-chloroacetophenone.
View Article and Find Full Text PDFSteady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2011
The steady state and time resolved spectroscopic studies reveal that two xanthene dyes Rhodamine 6G (R6G) and Rhodamine B (RB), used in the present investigations, form ground state hydrogen -bonded complexes with meso-tetrakis(4-carboxyphenyl) porphyrin (TCPP). However, it is apparent that upon photoexcitation the H-bonding complexes formed in the ground state decompose into the individual reacting components. This presumption was confirmed from the observation of the presence of only static quenching mode in the steady state fluorescence of the dyes in presence of porphyrin.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2011
The interaction between xanthene dye Fluorescein (Fl) and zinc oxide (ZnO) nanoparticles is investigated under physiological conditions. From the analysis of the steady state and time resolved spectroscopic studies in aqueous solution static mode is found to be responsible in the mechanism of fluorescence quenching of the dye Fl in presence of ZnO. ZnO nanoparticles are used as photocatalyst in order to degrade Fl dye.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2010
The interaction of an essential transport protein bovine serum albumin (BSA) and albumin-gold nanoconjugates (BSA-GNPs) with amino acid l-aspartic (ASP) are investigated by steady state and time resolved spectroscopic techniques. In both the cases, static fluorescence quenching is observed indicating that a ground state complex is formed between the donor BSA/BSA-GNP with the acceptor ASP. High values of quenching constant suggest that energy transfer also occurred from BSA and BSA-GNPs to ASP.
View Article and Find Full Text PDFThe interaction between anionic form of meso-tetrakis(4-carboxyphenyl) porphyrin (TCPP) and calf thymus deoxyribonucleic acid (CT DNA) is investigated by measuring UV-vis absorption, steady-state fluorescence, steady-state fluorescence anisotropy, time-resolved fluorescence, resonance light scattering (RLS), FT-IR and circular dichroism (CD) spectra along with the help of atomic force microscopy (AFM) under Tris-Borate-EDTA (TBE) buffer solution of pH 8.3. The static mode of fluorescence quenching of porphyrin by calf thymus deoxyribonucleic acid indicates the formation of a ground-state complex.
View Article and Find Full Text PDF