Background: Titin truncating variants (TTNtvs) have been repeatedly reported as causative of recessive but not dominant skeletal muscle disorders.
Objective: To determine whether a single heterozygous nonsense variant in can be responsible for the observed dominant myopathy in a large family.
Methods: In this case series, all available family members (8 affected and 6 healthy) belonging to a single family showing autosomal dominant inheritance were thoroughly examined clinically and genetically.
Environmental concerns are driving interest in postpetroleum synthetic textiles produced from microbial and fungal sources. Bacterial cellulose (BC) is a promising sustainable leather alternative, on account of its material properties, low infrastructure needs and biodegradability. However, for alternative textiles like BC to be fully sustainable, alternative ways to dye textiles need to be developed alongside alternative production methods.
View Article and Find Full Text PDFBackground And Purpose: Because Becker muscular dystrophy (BMD) is a heterogeneous disease and only few studies have evaluated adult patients, it is currently still unclear which outcome measures should be used in future clinical trials.
Methods: Muscle magnetic resonance imaging, patient-reported outcome measures and a wide range of clinical outcome measures, including motor function, muscle strength and timed-function tests, were evaluated in 21 adults with BMD at baseline and at 9 and 18 months of follow-up.
Results: Proton density fat fraction increased significantly in 10/17 thigh muscles after 9 months, and in all thigh and lower leg muscles after 18 months.
Background: Despite the widespread use of proton density fat fraction (PDFF) measurements with magnetic resonance imaging (MRI) to track disease progression in muscle disorders, it is still unclear how these findings relate to histopathological changes in muscle biopsies of patients with limb-girdle muscular dystrophy autosomal recessive type 12 (LGMDR12). Furthermore, although it is known that LGMDR12 leads to a selective muscle involvement distinct from other muscular dystrophies, the spatial distribution of fat replacement within these muscles is unknown.
Methods: We included 27 adult patients with LGMDR12 and 27 age-matched and sex-matched healthy controls and acquired 6-point Dixon images of the thighs and T1 and short tau inversion recovery (STIR) MR images of the whole body.
J Belg Soc Radiol
April 2022
Extramedullary acute myeloid leukemia tumor belongs to the differential diagnosis when a tumor develops in a patient with a history of leukemia, and magnetic resonance imaging is of diagnostic value by demonstrating iso-intensity and hyperintensity compared to skeletal muscle respectively on T1- and T2-weighted images and homogeneous contrast enhancement.
View Article and Find Full Text PDFBackground And Objectives: Limb-girdle muscular dystrophy autosomal recessive type 12 (LGMDR12) is a rare hereditary muscular dystrophy for which outcome measures are currently lacking. We evaluated quantitative MRI and clinical outcome measures to track disease progression to determine which tests could be useful in future clinical trials to evaluate potential therapies.
Methods: We prospectively measured the following outcome measures in all participants at baseline and after 1 and 2 years: 6-minute walk distance (6MWD), 10-meter walk test (10MWT), the Medical Research Council (MRC) sum scores, Biodex isometric dynamometry, serum creatine kinase, and 6-point Dixon MRI of the thighs.
Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by two mutations in anoctamin-5 (). Our aim was to identify genes and pathways that underlie LGMD-R12 and explain differences in the molecular predisposition and susceptibility between three thigh muscles that are severely (semimembranosus), moderately (vastus lateralis) or mildly (rectus femoris) affected in this disease. We performed transcriptomics on these three muscles in 16 male LGMD-R12 patients and 15 age-matched male controls.
View Article and Find Full Text PDFBacteria proficient at producing cellulose are an attractive synthetic biology host for the emerging field of Engineered Living Materials (ELMs). Species from the genus produce high yields of pure cellulose materials in a short time with minimal resources, and pioneering work has shown that genetic engineering in these strains is possible and can be used to modify the material and its production. To accelerate synthetic biology progress in these bacteria, we introduce here the tool kit (KTK), a standardized modular cloning system based on Golden Gate DNA assembly that allows DNA parts to be combined to build complex multigene constructs expressed in bacteria from plasmids.
View Article and Find Full Text PDFBackground: Nusinersen recently became available as the first treatment for Spinal Muscular Atrophy (SMA) and data on its effectiveness and safety in adult SMA patients are still scarce.
Methods: We evaluated the effectiveness and safety of nusinersen treatment during 14 months in 16 adult patients with SMA types 3 and 4 in a prospective study, and retrospectively detailed the natural history of 48 adult SMA patients types 2, 3 and 4.
Results: Hand grip strength (p = 0.
Heterozygous mutations in the stromal interaction molecule-1-gene (STIM1) cause a clinical phenotype varying from tubular aggregate myopathy with single or multiple signs of Stormorken syndrome to the full Stormorken phenotype. We identified a novel heterozygous mutation c.325C > T (p.
View Article and Find Full Text PDFBackground And Purpose: Whole-body muscle magnetic resonance imaging (MRI) has become widely used for diagnostic workup in patients with muscle diseases. The prevalence of incidental findings in diagnostic whole-body muscle MRI is unknown. Here, the prevalence and outcomes of incidentalomas in whole-body muscle MRI in a large cohort of patients with muscle symptoms were studied.
View Article and Find Full Text PDFBackground: Bacillus subtilis is an important industrial workhorse applied in the production of many different commercially relevant proteins, especially enzymes. Virtually all of these proteins are secreted via the general secretion (Sec) pathway. Studies from different laboratories have demonstrated essential or non-essential contributions of various Sec machinery components to protein secretion in B.
View Article and Find Full Text PDFType IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent.
View Article and Find Full Text PDFBacterial cellulose is a strong and flexible biomaterial produced at high yields by Acetobacter species and has applications in health care, biotechnology and electronics. Naturally, bacterial cellulose grows as a large unstructured polymer network around the bacteria that produce it, and tools to enable these bacteria to respond to different locations are required to grow more complex structured materials. Here, we introduce engineered cell-to-cell communication into a bacterial cellulose-producing strain of Komagataeibacter rhaeticus to enable different cells to detect their proximity within growing material and trigger differential gene expression in response.
View Article and Find Full Text PDFType IV pili (Tfp), which are key virulence factors in many bacterial pathogens, define a large group of multipurpose filamentous nanomachines widespread in Bacteria and Archaea. Tfp biogenesis is a complex multistep process, which relies on macromolecular assemblies composed of 15 conserved proteins in model gram-negative species. To improve our limited understanding of the molecular mechanisms of filament assembly, we have used a synthetic biology approach to reconstitute, in a nonnative heterologous host, a minimal machinery capable of building Tfp.
View Article and Find Full Text PDFBackground: The microbial cell factory Bacillus subtilis is a popular industrial platform for high-level production of secreted technical enzymes. Nonetheless, the effective secretion of particular heterologous enzymes remains challenging. Over the past decades various studies have tackled this problem, and major improvements were achieved by optimizing signal peptides or removing proteases involved in product degradation.
View Article and Find Full Text PDFTwin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which are often complemented with additional TatA-like proteins.
View Article and Find Full Text PDFThe twin-arginine translocation system (Tat) is a protein transport system that moves fully folded and cofactor-containing proteins across membranes of bacteria, archaea and thylakoids. The minimal Tat pathway is composed of two subunits, TatA and TatC. In some organisms TatA has been duplicated and evolved to form a third specialized subunit, TatB.
View Article and Find Full Text PDFThe twin-arginine translocation (Tat) pathway can transport folded and co-factor-containing cargo proteins over bacterial cytoplasmic membranes. Functional Tat machinery components, a folded state of the cargo protein and correct co-factor insertion in the cargo protein are generally considered as prerequisites for successful translocation. The present studies were aimed at a dissection of these requirements with regard to the Rieske iron-sulfur protein QcrA of Bacillus subtilis.
View Article and Find Full Text PDFThe increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria.
View Article and Find Full Text PDFThe twin-arginine protein translocation (Tat) system has a unique ability to translocate folded and co-factor-containing proteins across lipid bilayers. The Tat pathway is present in bacteria, archaea and in the thylakoid membranes of chloroplasts and, depending on the organism and environmental conditions, it can be deemed important for cell survival, virulence or bioproduction. This review provides an overview of the current understanding of the Tat system with specific focus on Gram-positive bacteria.
View Article and Find Full Text PDFGram-positive bacteria are known to export many proteins to the cell wall and growth medium, and accordingly, many studies have addressed the respective protein export mechanisms. In contrast, very little is known about the subsequent fate of these proteins. The present studies were therefore aimed at determining the fate of native exported proteins in the model organism Bacillus subtilis.
View Article and Find Full Text PDFThe twin-arginine translocation (Tat) pathway is known to translocate fully folded proteins across bacterial, archaeal, and organellar membranes. To date, the mechanisms involved in processing, proofreading, and quality control of Tat substrates have remained largely elusive. Bacillus subtilis is an industrially relevant Gram-positive model bacterium.
View Article and Find Full Text PDFThe oxidative folding of proteins involves disulfide bond formation, which is usually catalyzed by thiol-disulfide oxidoreductases (TDORs). In bacteria, this process takes place in the cytoplasmic membrane and other extracytoplasmic compartments. While it is relatively easy to study oxidative folding of water-soluble proteins on a proteome-wide scale, this has remained a major challenge for membrane proteins due to their high hydrophobicity.
View Article and Find Full Text PDF