Publications by authors named "Goosen N"

The urgency for food security and diversification has necessitated extensive exploration of all potential food options. Seaweeds, now considered potential functional foods are widely consumed across Asia and parts of Europe. In Africa, reports on consumption trends and food-related applications are scarce.

View Article and Find Full Text PDF

The City of Cape Town (CoCT), South Africa faced a critical situation between 2015 and 2018 in which the municipal water supply was almost completely exhausted. This situation, commonly referred to as Day Zero in South Africa emanated from a decline in rainfall, resulting in one of the most severe droughts in history. The crisis was also aggravated by rapid population growth and urbanization.

View Article and Find Full Text PDF

Effective decision-making requires the evaluation of several criteria rather than a single, preferred criterion. The best decision options (alternatives) are recommended to decision-makers when a multi-criteria decision problem is addressed. This study develops a multi-criteria selection method for the assessment of small-scale anaerobic digester technology by combining two existing methods.

View Article and Find Full Text PDF

Fucoidan, a sulphated polysaccharide, is found exclusively in brown seaweeds and has been reported to possess a wide range of biological functionalities. Fucoidans are found within the cell wall of brown seaweeds, which is composed of recalcitrant cellulose and hemicellulose. This hampers the recovery of fucoidans.

View Article and Find Full Text PDF

There is a need to develop sustainably sourced products that can address the needs for improved water retention in soils, slow the release rate of fertilizers (to prevent leaching and downstream eutrophication), and control soil pH for use in agriculture. This article investigates the use of industrial kelp solid waste extracted alginate (IW) slurries to produce soil amendment beads, potentially improving soil water retention, acting as slow-release fertilizers (SRFs), and combined with limestone controls soil pH levels. Alginate extracted from the IW was determined to have a lower guluronic (G) to mannuronic (M) acid ratio than pure laboratory-grade (LG) alginate (0.

View Article and Find Full Text PDF

Anaerobic digestion (AD) technology holds numerous potential benefits for farmers, however, challenges persist in terms of implementation costs and sustainability in developing countries. This paper presents a probabilistic techno-economic assessment tool for AD. A clear distinction is made between direct financial feasibility and wider (socio) economic feasibility.

View Article and Find Full Text PDF

Background: Fish-processing by-products represent an increasing proportion of wastes globally. Valorizing offers a sustainable alternative by harnessing high-value products through process development. This study aimed to develop and optimize a demineralization process to recover minerals from fish bones with subsequent recovery of phosphates from the resulting solution.

View Article and Find Full Text PDF

Indigenous and non-commercial fruits can be an important source of antioxidant polyphenols; however, the identity and content of polyphenols from non-commercial fruits are often poorly described. The study aimed to extract, identify, and quantify polyphenols from the skin of the indigenous Africa fruit , using solvent extraction. Three solvents (hexane, acetone, and 70% / ethanol) over three extraction times (30, 60 and 120 min) were used in a 3² full factorial experimental design to determine effects on polyphenol recovery, and individual polyphenolics were characterised using liquid chromatography high-resolution mass spectrometry (LC-HRMS) Ethanol was the most effective extraction solvent, and extracts had high levels of total phenolics and flavonoids (65 mg gallic and 40 mg catechin equivalents per gram dry sample respectively), and high antioxidant activity (18.

View Article and Find Full Text PDF

Plants adapt to fluctuating light conditions by a process called non-photochemical quenching (NPQ), where membrane protein PsbS plays a crucial role and transforms a change in the pH-gradient across the thylakoid membrane under excess light conditions into a photoprotective state, leading to de-excitation of antenna chlorophylls. The PsbS activation mechanism is elusive and has been proposed to involve a monomerization step and protonation of specific residues. To elucidate its function, it is essential to produce PsbS in large quantities, stabilize PsbS in a membrane-mimicking environment and analyze its pH-dependent conformational structure.

View Article and Find Full Text PDF

Bacteria frequently need to adapt to altered environmental conditions. Adaptation requires changes in gene expression, often mediated by global regulators of transcription. The nucleoid-associated protein H-NS is a key global regulator in -negative bacteria and is believed to be a crucial player in bacterial chromatin organization via its DNA-bridging activity.

View Article and Find Full Text PDF
Article Synopsis
  • A deficiency in the enzyme α-galactosidase A (α-GAL) leads to Fabry disease, where there is a buildup of toxic substances in cells due to glycosphingolipid storage issues.
  • Current treatment options, like enzyme replacement therapy, face challenges due to patients developing neutralizing antibodies, reducing efficacy.
  • The introduction of a modified enzyme, α-NAGAL, shows promise as it has higher activity, is not neutralized by antibodies, and effectively reduces toxic levels of globotriaosylsphingosine (Lyso-Gb3) in Fabry disease patients' serum.
View Article and Find Full Text PDF

Two-component regulatory systems allow bacteria to respond adequately to changes in their environment. In response to a given stimulus, a sensory kinase activates its cognate response regulator via reversible phosphorylation. The response regulator DevR activates a state of dormancy under hypoxia in , allowing this pathogen to escape the host defense system.

View Article and Find Full Text PDF

Sso10a proteins are small DNA-binding proteins expressed by the crenarchaeal model organism Sulfolobus solfataricus. Based on the structure of Sso10a1, which contains a winged helix-turn-helix motif, it is believed that Sso10a proteins function as sequence-specific transcription factors. Here we show that Sso10a1 and Sso10a2 exhibit different distinct DNA-binding modes.

View Article and Find Full Text PDF

The helical structure of double-stranded DNA is destabilized by increasing temperature. Above a critical temperature (the melting temperature), the two strands in duplex DNA become fully separated. Below this temperature, the structural effects are localized.

View Article and Find Full Text PDF

Repairing damaged DNA is essential for an organism's survival. UV damage endonuclease (UVDE) is a DNA-repair enzyme that can recognize and incise different types of damaged DNA. We present the structure of Sulfolobus acidocaldarius UVDE on its own and in a pre-catalytic complex with UV-damaged DNA containing a 6-4 photoproduct showing a novel 'dual dinucleotide flip' mechanism for recognition of damaged dipyrimidines: the two purines opposite to the damaged pyrimidine bases are flipped into a dipurine-specific pocket, while the damaged bases are also flipped into another cleft.

View Article and Find Full Text PDF

UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II).

View Article and Find Full Text PDF

The UvrA protein is the initial DNA damage-sensing protein in bacterial nucleotide excision repair and detects a wide variety of structurally unrelated lesions. After initial recognition of DNA damage, UvrA loads the UvrB protein onto the DNA. This protein then verifies the presence of a lesion, after which UvrA is released from the DNA.

View Article and Find Full Text PDF

Damage detection during nucleotide excision repair requires the action of multiple proteins that probe the DNA for different parameters like disruption of basepairing, DNA bendability and presence of chemical modifications. In a recent study it has been shown that two of these probing events can be spatially separated on the DNA. Upon initial binding of the XPC protein to a region with disrupted basepairing a complex of XPC, TFIIH and XPA is translocated to a CPD lesion even when this chemical modification is located up to 160 nucleotides from the mispaired region.

View Article and Find Full Text PDF

UV damage endonuclease is a DNA repair enzyme that can both recognize damage such as UV lesions and introduce a nick directly 5' to them. Recently, the crystal structure of the enzyme from Thermus thermophilus was solved. In the electron density map of this structure, unexplained density near the active site was observed at the tip of Lys229.

View Article and Find Full Text PDF

The UvrA protein is the initial damage-recognizing factor in bacterial nucleotide excision repair. Each monomer of the UvrA dimer contains two ATPase sites. Using single-molecule analysis we show that dimerization of UvrA in the presence of ATP is significantly higher than with ADP or nonhydrolyzable ATPgammaS, suggesting that the active UvrA dimer contains a mixture of ADP and ATP.

View Article and Find Full Text PDF

Helicases play critical roles in all aspects of nucleic acid metabolism by catalyzing the remodeling of DNA and RNA structures. UvrD is an abundant helicase in Escherichia coli with well characterized functions in mismatch and nucleotide excision repair and a possible role in displacement of proteins such as RecA from single-stranded DNA. The mismatch repair protein MutL is known to stimulate UvrD.

View Article and Find Full Text PDF

UV damage endonuclease (UVDE) from Schizosaccharomyces pombe initiates repair of UV lesions and abasic sites by nicking the DNA 5' to the damaged site. In this paper we show that in addition UVDE incises DNA containing a single-strand nick or gap, but that the enzymatic activity on these substrates as well as on abasic sites strongly depends on the presence of a neighbouring pyrimidine residue. This indicates that, although UVDE may have been derived from an ancestral AP endonuclease its major substrate is a UV lesion and not an AP site.

View Article and Find Full Text PDF

UvrB is the main damage recognition protein in bacterial nucleotide excision repair and is capable of recognizing various structurally unrelated types of damage. Previously we have shown that upon binding of Escherichia coli UvrB to damaged DNA two nucleotides become extrahelical: the nucleotide directly 3' to the lesion and its base-pairing partner in the non-damaged strand. Here we demonstrate using a novel fluorescent 2-aminopurine-menthol modification that the position of the damaged nucleotide itself does not change upon UvrB binding.

View Article and Find Full Text PDF

The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.

View Article and Find Full Text PDF