Publications by authors named "Gooley P"

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.

View Article and Find Full Text PDF

The Phosphoprotein (P protein) of the rabies virus has multiple roles in virus replication. A critical function is to act as a cofactor in genome replication and mRNA production through binding via its N-terminal region to the L protein, the essential enzyme for mRNA and genome synthesis/processing, and via its C-terminal domain (P) to the N protein and viral RNA (N-RNA) ribonucleoprotein complex. The binding site of the P on the N protein is a disordered loop that is expected to be phosphorylated at Ser389.

View Article and Find Full Text PDF

Introduction: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling condition that can affect adolescents during a vulnerable period of development. The underlying biological mechanisms for ME/CFS remain unclear and have rarely been investigated in the adolescent population, despite this period representing an age peak in the overall incidence. The primary objective of this is to provide a foundational set of biological data on adolescent ME/CFS patients.

View Article and Find Full Text PDF

Background: Diagnosing complex illnesses like Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is complicated due to the diverse symptomology and presence of comorbid conditions. ME/CFS patients often present with multiple health issues, therefore, incorporating comorbidities into research can provide a more accurate understanding of the condition's symptomatology and severity, to better reflect real-life patient experiences.

Methods: We performed association studies and machine learning on 1194 ME/CFS individuals with blood plasma nuclear magnetic resonance (NMR) metabolomics profiles, and seven exclusive comorbid cohorts: hypertension (n = 13,559), depression (n = 2522), asthma (n = 6406), irritable bowel syndrome (n = 859), hay fever (n = 3025), hypothyroidism (n = 1226), migraine (n = 1551) and a non-diseased control group (n = 53,009).

View Article and Find Full Text PDF

SOX proteins are a family of transcription factors (TFs) that play critical functions in sex determination, neurogenesis, and chondrocyte differentiation, as well as cardiac, vascular, and lymphatic development. There are 20 SOX family members in humans, each sharing a 79-residue L-shaped high mobility group (HMG)-box domain that is responsible for DNA binding. SOX2 was recently shown to interact with long non-coding RNA and large-intergenic non-coding RNA to regulate embryonic stem cell and neuronal differentiation.

View Article and Find Full Text PDF

Introduction: Disturbances of energy metabolism contribute to the clinical manifestations of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Previously, we found that B cells from ME/CFS patients have an increased expression of CD24, a modulator of many cellular functions including those of cell stress. The relative ability of B cells from ME/CFS patients and healthy controls (HC) to respond to rapid changes in energy demand was compared.

View Article and Find Full Text PDF

α-, α-, and α-adrenoceptors (α-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease.

View Article and Find Full Text PDF

The conformational ensembles of G protein-coupled receptors (GPCRs) include inactive and active states. Spectroscopy techniques, including NMR, show that agonists, antagonists and other ligands shift the ensemble toward specific states depending on the pharmacological efficacy of the ligand. How receptors recognize ligands and the kinetic mechanism underlying this population shift is poorly understood.

View Article and Find Full Text PDF

Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family β-receptor, gp130.

View Article and Find Full Text PDF

Neurotensin (NT) is a linear disordered peptide that activates two different class A GPCRs, neurotensin receptor 1 (NTS) and NTS. Resolved structures of the complex of the C-terminal fragment of NT, NT8-13, with NTS shows the peptide takes a well-defined structure in the bound state. However, the mechanisms underlying NT recognition of NTS, and the conformational transition of NT upon binding NTS is an open question that if answered may aid discovery of highly selective drugs and reveal potential secondary binding sites on the surface of the receptor.

View Article and Find Full Text PDF

Peptides and peptidomimetics are attractive drug candidates because of their high target specificity and low-toxicity profiles. Developing peptidomimetics using hydrocarbon (HC)-stapling or other stapling strategies has gained momentum because of their high stability and resistance to proteases; however, they have limitations. Here, we take advantage of the α-methyl group and an aromatic phenyl ring in a unique unnatural amino acid, α-methyl-l-phenylalanine (αF), and propose a novel, noncovalent stapling strategy to stabilize peptides.

View Article and Find Full Text PDF

The neurotensin receptor 1 (NTS) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used CH-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble.

View Article and Find Full Text PDF

Peptides form the largest group of ligands that modulate the activity of more than 120 different GPCRs. Among which linear disordered peptide ligands usually undergo significant conformational changes upon binding that is essential for receptor recognition and activation. Conformational selection and induced fit are the extreme mechanisms of coupled folding and binding that can be distinguished by analysis of binding pathways by methods that include NMR.

View Article and Find Full Text PDF

Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) studies have revealed that fast methyl sidechain dynamics can report on entropically-driven allostery. Yet, NMR applications have been largely limited to the super-microsecond motional regimes of G protein-coupled receptors (GPCRs). We use C-methionine chemical shift-based global order parameters to test if ligands affect the fast dynamics of a thermostabilized GPCR, neurotensin receptor 1 (NTS).

View Article and Find Full Text PDF

Neurotensin (NT) is a 13-residue endogenous peptide found in mammals, with neurotransmission and hormonal roles in the central nervous system and gastrointestinal tract, respectively. The first residue of NT is a pyroglutamate (pGlu) that makes the expression and purification of large amounts of NT with native modification challenging. Here, we describe a simple and efficient procedure for expression and purification of large amounts of NT based on using the small ubiquitin-like modifier (SUMO) as a fusion partner and subsequent enzymatic conversion of the N-terminal glutamine to pGlu.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is one of the principal analytical techniques for metabolomics. It has the advantages of minimal sample preparation and high reproducibility, making it an ideal technique for generating large amounts of metabolomics data for biobanks and large-scale studies. Metabolomics is a popular "omics" technology and has established itself as a comprehensive exploratory biomarker tool; however, it has yet to reach its collaborative potential in data collation due to the lack of standardisation of the metabolomics workflow seen across small-scale studies.

View Article and Find Full Text PDF

Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) vaccination of cows has elicited broadly neutralizing antibodies (bNAbs). In this study, monoclonal antibodies (mAbs) are isolated from a clade A (KNH1144 and BG505) vaccinated cow using a heterologous clade B antigen (AD8). CD4 binding site (CD4bs) bNAb (MEL-1872) is more potent than a majority of CD4bs bNAbs isolated so far.

View Article and Find Full Text PDF

Introduction: Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) is a complex multisystem disease characterised by severe and disabling new-onset symptoms of post-exertional malaise (PEM), fatigue, brain fog, and sleep dysfunction that lasts for at least six months. Accumulating evidence suggests that sex and endocrine events have a significant influence on symptom onset and moderation of ME/CFS, with female sex being one of the most consistent and credible predictive risk factors associated with diagnosis. Such sex differences suggest sex chromosomes and sex steroids may play a part in the development of the condition or moderation of symptoms, although this has yet to be explored in detail.

View Article and Find Full Text PDF

The rabies virus (RABV) phosphoprotein (P protein) is expressed as several isoforms, which differ in nucleocytoplasmic localization and microtubule (MT) association, mediated by several sequences, including nuclear localization (NLS) and export (NES) sequences. This appears to underpin a functional diversity enabling multiple functions in viral replication and modulation of host biology. Mechanisms regulating trafficking are poorly defined, but phosphorylation by protein kinase C (PKC) in the P protein C-terminal domain (P) regulates nuclear trafficking, mediated by P-localized NLS/NES sequences, indicating that phosphorylation contributes to functional diversity.

View Article and Find Full Text PDF

Necroptosis is a lytic programmed cell death pathway with origins in innate immunity that is frequently dysregulated in inflammatory diseases. The terminal effector of the pathway, MLKL, is licensed to kill following phosphorylation of its pseudokinase domain by the upstream regulator, RIPK3 kinase. Phosphorylation provokes the unleashing of MLKL's N-terminal four-helix bundle (4HB or HeLo) domain, which binds and permeabilizes the plasma membrane to cause cell death.

View Article and Find Full Text PDF

Our poor understanding of the mechanism by which the peptide-hormone H2 relaxin activates its G protein coupled receptor, RXFP1 and the related receptor RXFP2, has hindered progress in its therapeutic development. Both receptors possess large ectodomains, which bind H2 relaxin, and contain an N-terminal LDLa module that is essential for receptor signaling and postulated to be a tethered agonist. Here, we show that a conserved motif (GDxxGWxxxF), C-terminal to the LDLa module, is critical for receptor activity.

View Article and Find Full Text PDF

Rabies virus phosphoprotein (P protein) is a multifunctional protein that plays key roles in replication as the polymerase cofactor that binds to the complex of viral genomic RNA and the nucleoprotein (N protein), and in evading the innate immune response by binding to STAT transcription factors. These interactions are mediated by the C-terminal domain of P (PCTD). The colocation of these binding sites in the small globular PCTD raises the question of how these interactions underlying replication and immune evasion, central to viral infection, are coordinated and, potentially, coregulated.

View Article and Find Full Text PDF

Introduction: Research has highlighted relationships between the micro-organisms that inhabit our gastrointestinal tract (oral and gut microbiota) with host mood and gastrointestinal functioning. Mental health disorders and functional gastrointestinal disorders co-occur at high rates, although the mechanisms underlying these associations remain unclear. The Bugs and Brains Study aims to investigate complex relationships between anxiety/depression and irritable bowel syndrome (IBS) in two ways.

View Article and Find Full Text PDF