The blood brain barrier (BBB) efficiently limits the penetration of biologics drugs from blood to brain. Establishment of an in vitro BBB model can facilitate screening of central nervous system (CNS) drug candidates and accelerate CNS drug development. Despite many established in vitro models, their application to biologics drug selection has been limited.
View Article and Find Full Text PDFObjectives: To assess the ability of monoclonal antibodies (mAbs) specific for fibronectin extra-domain A (FnEDA) to target diseased tissues of mouse collagen induced arthritis (mCIA) models. To explore the parameters of the targeting exhibited by anti-FnEDA mAbs including timing and location.
Methods: Targeting capabilities of anti-FnEDA mAbs were demonstrated by biodistribution study where i.
Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would.
View Article and Find Full Text PDFTargeted delivery of a therapeutic agent to a site of pathology to ameliorate disease while limiting exposure at undesired tissues is an aspirational treatment scenario. Targeting diseased kidneys for pharmacologic treatment has had limited success. We designed an approach to target an extracellular matrix protein, the fibronectin extra domain A isoform (FnEDA), which is relatively restricted in distribution to sites of tissue injury.
View Article and Find Full Text PDFBecause of the heterogeneous nature of articular cartilage tissue, penetration of potential therapeutic molecules for osteoarthritis (OA) through the articular surface (AS) is complex, with many factors that affect transport of these solutes within the tissue. Therefore, the goal of this study is to investigate how the size of antibody (Ab) variants, as well as application of cyclic mechanical loading, affects solute transport within healthy cartilage tissue. Penetration of fluorescently tagged solutes was quantified using confocal microscopy.
View Article and Find Full Text PDFMacrophages exist as sentinels in innate immune response and react by expressing proinflammatory cytokines and up-regulating antigen-presenting and costimulatory molecules. We report a novel function for prokineticin-1 (PK1)/endocrine gland-derived vascular endothelial growth factor. Screening of murine tissue sections and cells for specific binding site leads to the identification of macrophages as an in vivo cellular target for PK1.
View Article and Find Full Text PDFGlycoprotein VI is a type I membrane protein identified as a key platelet receptor for collagen. In vitro binding of the GPVI receptor with collagen leads to activation and ultimately to aggregation of platelets. In vivo, GPVI-collagen interactions could cause formation of occlusive thrombi within vessels with damaged endothelial barriers.
View Article and Find Full Text PDFThe recently identified CD28 homolog and costimulatory molecule programmed death-1 (PD-1) and its ligands, PD-L1 and PD-L2, which are homologs of B7, constitute an inhibitory regulatory pathway of potential therapeutic use in immune-mediated diseases. We examined the expression and functions of PD-1 and its ligands in experimental cardiac allograft rejection. In initial studies, we found that most normal tissues and cardiac isografts had minimal expression of PD-1, PD-L1, or PD-L2, but intragraft induction of all three molecules occurred during development of cardiac allograft rejection.
View Article and Find Full Text PDFNeuregulins are members of the epidermal growth factor family of related ligands that exert pleotropic effects during development on the Schwann cell lineage. The receptor complex activated by neuregulin in Schwann cells consists of HER2 (erbB2) and HER3 (erbB3). The intracellular signaling events that follow activation of the HER2/HER3 receptor complex in primary cells, and in particular in Schwann cells, are poorly understood.
View Article and Find Full Text PDFOptimal T cell activation requires engagement of CD28 with its counterligands B7-1 and B7-2. Inducible costimulator (ICOS) is the third member of the CD28/CTLA4 family that binds a B7-like protein, B7RP-1. Administration of ICOS-Ig attenuates T cell expansion following superantigen (SAg) administration, but fails to regulate either peripheral deletion or anergy induction.
View Article and Find Full Text PDFNotch signaling plays a critical role in a variety of developmental programs. In vertebrates, the complexity of the process is underscored by the existence of multiple Notch receptors and multiple ligands, each of which displays a distinct expression profile. Furthermore, the ligands can be subdivided into two families, the Serrate/Jagged family and the Delta family.
View Article and Find Full Text PDFInjuries to the vessel wall and subsequent exposure of collagen from the subendothelial matrix result in thrombus formation. In physiological conditions, the platelet plug limits blood loss. However, in pathologic conditions, such as rupture of atherosclerotic plaques, platelet-collagen interactions are associated with cardiovascular and cerebral vascular diseases.
View Article and Find Full Text PDFNeuregulins signal cells by binding to an activating hetero- and homodimeric forms of the neuregulin receptors HER2 (erbB2), HER3 (erbB3), and HER4 (erbB4). Axonally derived neuregulin signals myelin forming cells of the central and peripheral nervous systems through different receptor complexes: oligodendrocytes through erbB2/erbB4 heterodimers and Schwann cells through erbB2/erbB3 heterodimers. Since the leading edge of myelinating cells interacts directly with the axonal surface, we were interested in determining if signaling molecules localized at the leading edge associate with activated neuregulin receptors.
View Article and Find Full Text PDFWnt proteins influence many aspects of embryonic development, and their activity is regulated by several secreted antagonists, including the Xenopus Dickkopf-1 (xDkk-1) protein. xDkk-1 inhibits Wnt activities in Xenopus embryos and may play a role in induction of head structures. Here, we characterize a family of human Dkk-related genes composed of Dkk-1, Dkk-2, Dkk-3, and Dkk-4, together with a unique Dkk-3 related protein termed Soggy (Sgy).
View Article and Find Full Text PDFMembers of the epidermal growth factor family of receptors have long been implicated in the pathogenesis of various tumors, and more recently, apparent roles in the developing heart and nervous system have been described. Numerous ligands that activate these receptors have been isolated. We report here on the cloning and initial characterization of a second ligand for the erbB family of receptors.
View Article and Find Full Text PDFWe are interested in the signaling between axons and glia that leads to myelination and maintenance of the myelin internode, and we have focused on the role of neuregulins and their receptors. Neuregulins are a family of ligands that includes heregulin, neu differentiation factor, glial growth factor, and the acetylcholine receptor-inducing activity. Three signal transducing transmembrane receptors for neuregulins, which bear significant homology to the EGF receptor, are currently known: HER2 (erbB2), HER3 (erbB3), and HER4 (erbB4).
View Article and Find Full Text PDFRecently we identified three novel Schwann cell mitogens named GGF (glial growth factor)-I (34 kDa), GGF-II (59 kDa), and GGF-III (45 kDa), and provided evidence that they are three distinct but structurally related members of a larger family of factors, which includes heregulin, neu differentiation factor, and acetylcholine receptor-inducing activity (ARIA). We report here the characterization of the mitogenic and trophic activities for all three forms of GGF on rat Schwann cells and several other cell types. GGF-I, GGF-II, and GGF-III are potent mitogens for rat Schwann cells in vitro at nanomolar concentrations, whereas at lower concentrations they promote Schwann cell survival, in the absence of cAMP elevating agents.
View Article and Find Full Text PDFCold Spring Harb Symp Quant Biol
September 1997
Skeletal muscle ACh receptors (AChRs) accumulate at neuromuscular junctions (nmjs) at least partly because of the selective induction of AChR subunit genes in subsynaptic myotube nuclei by the motor nerve terminal. Additionally, mammalian AChRs undergo a postnatal change in subunit composition from embryonic (alpha 2 beta gamma delta) to adult (alpha 2 beta epsilon delta) forms, a switch that also depends on innervation. ARIA, a protein purified from chicken brains based on its ability to induce AChR synthesis in primary chick muscle cells, is a strong candidate for being the molecule responsible for these early developmental events.
View Article and Find Full Text PDFARIA is a member of a family of polypeptide growth and differentiation factors that also includes glial growth factor (GGF), neu differentiation factor, and heregulin. ARIA mRNA is expressed in all cholinergic neurons of the central nervous systems of rats and chicks, including spinal cord motor neurons. In vitro, ARIA elevates the rate of acetylcholine receptor incorporation into the plasma membrane of primary cultures of chick myotubes.
View Article and Find Full Text PDFGlial growth factors (GGFs) were purified from bovine pituitaries using an in vitro rat Schwann cell mitogenesis assay. In addition to an approximately 34-kDa species termed GGF-I, similar in molecular mass to a previously identified molecule (Lemke, G. E.
View Article and Find Full Text PDFGlial growth factors, proteins that are mitogenic for Schwann cells, and several ligands for the p185erbB2 receptor, are products of the same gene. Alternative splicing of the messenger RNA generates an array of putative membrane-attached, intracellular and secreted signalling proteins, at least some of which are expressed in the developing spinal cord and brain. These factors are probably important in the development and regeneration of the nervous system.
View Article and Find Full Text PDF