Publications by authors named "Goo-Rak Kwon"

Alzheimer's disease (AD) poses a substantial public health challenge, demanding accurate screening and diagnosis. Identifying AD in its early stages, including mild cognitive impairment (MCI) and healthy control (HC), is crucial given the global aging population. Structural magnetic resonance imaging (sMRI) is essential for understanding the brain's structural changes due to atrophy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide. Early and accurate prediction of AD progression is crucial for early intervention and personalized treatment planning. Although AD does not yet have a reliable therapy, several medications help slow down the disease's progression.

View Article and Find Full Text PDF

The disruption of functional connectivity is one of the early events that occurs in the brains of Alzheimer's disease (AD) patients. This paper reports a study on the clustering structure of functional connectivity in eight important brain networks in healthy, AD, and prodromal stage subjects. We used the threshold-free cluster enhancement (TFCE) method to explore the connectivity from resting-state functional MR images (rs-fMRIs).

View Article and Find Full Text PDF

Activation functions in the neural network are responsible for 'firing' the nodes in it. In a deep neural network they 'activate' the features to reduce feature redundancy and learn the complex pattern by adding non-linearity in the network to learn task-specific goals. In this paper, we propose a simple and interesting activation function based on the combination of scaled gamma correction and hyperbolic tangent function, which we call Scaled Gamma Tanh (SGT) activation.

View Article and Find Full Text PDF

Accurate diagnosis of the initial phase of Alzheimer's disease (AD) is essential and crucial. The objective of this research was to employ efficient biomarkers for the diagnostic analysis and classification of AD based on combining structural MRI (sMRI) and resting-state functional MRI (rs-fMRI). So far, several anatomical MRI imaging markers for AD diagnosis have been identified.

View Article and Find Full Text PDF

Recent studies suggest the brain functional connectivity impairment is the early event occurred in case of Alzheimer's disease (AD) as well as mild cognitive impairment (MCI). We model the brain as a graph based network to study these impairment. In this paper, we present a new diagnosis approach using graph theory based features from functional magnetic resonance (fMR) images to discriminate AD, MCI, and healthy control (HC) subjects using different classification techniques.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most common neurodegenerative illnesses (dementia) among the elderly. Recently, researchers have developed a new method for the instinctive analysis of AD based on machine learning and its subfield, deep learning. Recent state-of-the-art techniques consider multimodal diagnosis, which has been shown to achieve high accuracy compared to a unimodal prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on improving the classification accuracy of neuroimaging techniques in differentiating between Alzheimer's disease (AD), mild cognitive impairment (MCI) subtypes, and healthy controls (HC), using various neuroimaging modalities combined with genetic data.
  • - Researchers utilized whole-brain parcelation analysis and voxel-wise analysis to extract features from neuroimaging data of 129 subjects, including AD, stable MCI, converting MCI, and healthy controls, all sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
  • - The study aims to enhance analysis consistency and accuracy by exploring both graphical and region-based analyses across multiple binary classification groups, ultimately seeking better understanding and discrimination of neurodegenerative stages.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia and a progressive neurodegenerative condition, characterized by a decline in cognitive function. Symptoms usually appear gradually and worsen over time, becoming severe enough to interfere with individual daily tasks. Thus, the accurate diagnosis of both AD and the prodromal stage (i.

View Article and Find Full Text PDF

Alzheimer's disease (AD), including its mild cognitive impairment (MCI) phase that may or may not progress into the AD, is the most ordinary form of dementia. It is extremely important to correctly identify patients during the MCI stage because this is the phase where AD may or may not develop. Thus, it is crucial to predict outcomes during this phase.

View Article and Find Full Text PDF

In recent years, several high-dimensional, accurate, and effective classification methods have been proposed for the automatic discrimination of the subject between Alzheimer's disease (AD) or its prodromal phase {i.e., mild cognitive impairment (MCI)} and healthy control (HC) persons based on T1-weighted structural magnetic resonance imaging (sMRI).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common neurodegenerative disease with an often seen prodromal mild cognitive impairment (MCI) phase, where memory loss is the main complaint progressively worsening with behavior issues and poor self-care. However, not all patients clinically diagnosed with MCI progress to the AD. Currently, several high-dimensional classification techniques have been developed to automatically distinguish among AD, MCI, and healthy control (HC) patients based on T1-weighted MRI.

View Article and Find Full Text PDF

Using deep neural networks for segmenting an MRI image of heterogeneously distributed pixels into a specific class assigning a label to each pixel is the concept of the proposed approach. This approach facilitates the application of the segmentation process on a preprocessed MRI image, with a trained network to be utilized for other test images. As labels are considered expensive assets in supervised training, fewer training images and training labels are used to obtain optimal accuracy.

View Article and Find Full Text PDF

Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach.

View Article and Find Full Text PDF

. Error-free diagnosis of Alzheimer's disease (AD) from healthy control (HC) patients at an early stage of the disease is a major concern, because information about the condition's severity and developmental risks present allows AD sufferer to take precautionary measures before irreversible brain damage occurs. Recently, there has been great interest in computer-aided diagnosis in magnetic resonance image (MRI) classification.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a leading cause of dementia, which causes serious health and socioeconomic problems. A progressive neurodegenerative disorder, Alzheimer's causes the structural change in the brain, thereby affecting behavior, cognition, emotions, and memory. Numerous multivariate analysis algorithms have been used for classifying AD, distinguishing it from healthy controls (HC).

View Article and Find Full Text PDF

Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data.

View Article and Find Full Text PDF

The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1lkc5qb2n42k71vp3dtun97piesi71vq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once