Publications by authors named "Gonzalo R Tortella"

Lung cancer is the leading cause of cancer death in both men and women. It represents a public health problem that must be addressed through the early detection of specific biomarkers and effective treatment. To address this critical issue, it is imperative to implement effective methodologies for specific biomarker detection of lung cancer in real clinical samples.

View Article and Find Full Text PDF

Nanotechnology has emerged as a cornerstone in contemporary research, marked by the advent of advanced technologies aimed at nanoengineering materials with diverse applications, particularly to address challenges in human health. Among these challenges, antimicrobial resistance (AMR) has risen as a significant and pressing threat to public health, creating obstacles in preventing and treating persistent diseases. Despite efforts in recent decades to combat AMR, global trends indicate an ongoing and concerning increase in AMR.

View Article and Find Full Text PDF

Chlorpyrifos (CP) is a globally used pesticide with acute toxicity. This work studied the photocatalytic degradation of CP using TiO, ZnO nanoparticles, and nanocomposites of TiO and ZnO supported on SPIONs (SPION@SiO@TiO and SPION@SiO@ZnO). The nanocomposites were synthesized by multi-step incipient wetness impregnation.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging.

View Article and Find Full Text PDF

The COVID-19 pandemic has had a negative impact on education. The restrictions imposed have undoubtedly led to impairment of the psychological well-being of both teachers and students, and of the way they experience interpersonal relationships. As reported previously in the literature, adverse effects such as loneliness, anxiety, and stress have resulted in a decrease in the cognitive performance of school and higher education students.

View Article and Find Full Text PDF

The SARS-CoV-2 virus outbreak revealed that these have the ability to rapidly change lives. Undoubtedly, SARS-CoV-2 as well as other viruses can cause important global impacts, affecting public health, as well as, socioeconomic development. But viruses are not only a public health concern, they are also a problem in agriculture.

View Article and Find Full Text PDF

The endogenous free radical nitric oxide (NO) plays a pivotal role in the immunological system. NO has already been reported as a potential candidate for use in the treatment of human coronavirus infections, including COVID-19. In fact, inhaled NO has been used in clinical settings for its antiviral respiratory action, and in the regulation of blood pressure to avoid clot formation.

View Article and Find Full Text PDF

Nitric oxide (NO) is an endogenous free radical that controls important physiological and pathophysiological processes, including a role in cancer biology. NO can have a direct toxic effect on tumors, or it can sensitize cancer cells and contribute to the reversal of multidrug resistance (MDR). As NO is a gas and free radical, NO donors have been investigated for their anticancer effects.

View Article and Find Full Text PDF

In the present work, we designed a microfluidic electrochemical immunosensor with enough sensibility and precision to quantify epithermal growth factor receptor (EGFR) in plasma extracellular vesicles (EVs) of plasma from breast cancer patients. The sensor employs SiNPs coated with chitosan (SiNPs-CH) as reaction's platform, based on the covalently immobilization of monoclonal anti-EGFR on SiNPs-CH retained in the central channel (CC) of the microfluidic device. The synthetized SiNPs-CH were characterized by UV-visible spectroscopy (UV-visible), energy dispersive spectrometry (EDS), Nanoparticle Tracking Analysis (NTA) and transmission electron microscopy (TEM).

View Article and Find Full Text PDF
Article Synopsis
  • Copper nanoparticles (CuNPs) may impact pest control in agriculture due to their antimicrobial properties, but this study examines their effect on the transfer of catabolic plasmids in microorganisms.
  • CuNPs were tested at various concentrations (10, 20, 50, and 100 µg/mL) and showed that they significantly reduced the conjugation frequency of plasmids responsible for pesticide degradation in microorganisms.
  • The findings suggest that using copper in agricultural soils could hinder the ability of microbial communities to break down pesticides, raising concerns about the environmental risks associated with copper usage.
View Article and Find Full Text PDF

The aim of this work was to determine the efficiency of a straw/compost/soil biomixture for pesticide depuration during its aging and continuous use, for a period of over a year, based on its capacity to remove carbofuran (CFN), while simultaneously monitoring the variations in microbial community structure. Successive CFN spikings were applied in the biomixture at 6-week intervals, and the removal efficiency was determined 48 h post-application. Initially, only a discrete degradation performance was observed (9.

View Article and Find Full Text PDF

This article presents a critical review of the actual state of fungal activities on environmental pollutants, fungal diversity, the use of fungi in the degradation of chemical pollutants, enzyme degrading systems and perspectives on the use of fungi in bioremediation and unexplored research. The ability of fungi to transform or metabolize chemical pollutants has received much attention due to environmental persistence and chemical toxicity. The fungal degradation of xenobiotics is looked upon as an effective method of removing these pollutants from the environment by a process which is currently known as bioremediation.

View Article and Find Full Text PDF