Publications by authors named "Gonzalo Perez-Mitta"

This study shows that five membrane proteins-three GPCRs, an ion channel, and an enzyme-form self-clusters under natural expression levels in a cardiac-derived cell line. The cluster size distributions imply that these proteins self-oligomerize reversibly through weak interactions. When the concentration of the proteins is increased through heterologous expression, the cluster size distributions approach a critical distribution at which point a phase transition occurs, yielding larger bulk phase clusters.

View Article and Find Full Text PDF

Integral membrane proteins (IMPs) constitute a large fraction of organismal proteomes, playing fundamental roles in physiology and disease. Despite their importance, the mechanisms underlying dynamic features of IMPs, such as anomalous diffusion, protein-protein interactions, and protein clustering, remain largely unknown due to the high complexity of cell membrane environments. Available methods for in vitro studies are insufficient to study IMP dynamics systematically.

View Article and Find Full Text PDF

Mechanical forces modify the cell membrane potential by opening mechanosensitive ion channels. We report the design and construction of a lipid bilayer tensiometer to study channels that respond to lateral membrane tension, [Formula: see text] , in the range 0.2 to 1.

View Article and Find Full Text PDF

Recently, much scientific effort has been centered on the control of the ionic transport properties of solid state nanochannels and the rational design and integration of chemical systems to induce changes in the ionic transport by means of interactions with selected target molecules. Here, we report the fabrication of a novel nanofluidic device based on solid-state nanochannels, which combines silane chemistry with both track-etched and atomic layer deposition (ALD) technologies. Nanodevice construction involves the coating of bullet-shaped single-pore nanochannels with silica (SiO) by ALD and subsequent surface modification by reaction between silanol groups exposed on pore walls and N-(3-triethoxysilylpropyl)-gluconamide, in order to create a gluconamide-decorated nanochannel surface.

View Article and Find Full Text PDF

Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices.

View Article and Find Full Text PDF

Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties.

View Article and Find Full Text PDF

During the last decade, nanofluidic devices based on solid-state nanopores and nanochannels have come into scene in materials science and will not leave anytime soon. One of the main reasons for this is the excellent control over ionic transport exerted by such devices that promises further important advances when integrated into more complex molecular devices. As a result, pH, temperature, and voltage-regulated devices have been obtained.

View Article and Find Full Text PDF

There is currently high interest in developing nanofluidic devices whose iontronic output is defined by biological interactions. The fabrication of a phosphate responsive nanofluidic diode by using the biological relevant amine-phosphate interactions is shown. The fabrication procedure includes the modification of a track-etched asymmetric (conical) nanochannel with polyallylamine (PAH) by electrostatic self-assembly.

View Article and Find Full Text PDF

The ability of living systems to respond to stimuli and process information has encouraged scientists to develop integrated nanosystems displaying similar functions and capabilities. In this regard, biological pores have been a source of inspiration due to their exquisite control over the transport of ions within cells, a feature that ultimately plays a major role in multiple physiological processes, transduction of physical stimuli into nervous signals. Developing abiotic nanopores, which respond to certain chemical, biological or physical inputs producing "iontronic" signals, is now a reality thanks to the combination of "soft" surface science with nanofabrication techniques.

View Article and Find Full Text PDF

The design of an all-plastic field-effect nanofluidic diode is proposed, which allows precise nanofluidic operations to be performed. The fabrication process involves the chemical synthesis of a conductive poly(3,4-ethylenedioxythiophene) (PEDOT) layer over a previously fabricated solid-state nanopore. The conducting layer acts as gate electrode by changing its electrochemical state upon the application of different voltages, ultimately changing the surface charge of the nanopore.

View Article and Find Full Text PDF

During the last decade, the possibility of generating synthetic nanoarchitectures with functionalities comparable to biological entities has sparked the interest of the scientific community related to diverse research fields. In this context, gaining fundamental understanding of the central features that determine the rectifying characteristics of the conical nanopores is of mandatory importance. In this work, we analyze the influence of mono- and divalent salts in the ionic current transported by asymmetric nanopores and focus on the delicate interplay between ion exclusion and charge screening effects that govern the functional response of the nanofluidic device.

View Article and Find Full Text PDF

In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as "amphipols", into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils.

View Article and Find Full Text PDF

The use of solid state nanochannels as nanofluidic diodes is currently a topic of large interest in nanotechnology. Particularly, there is a focus in the development of nanochannels with surface functionalities that make them responsive to multiple environmental variables. Here, we present for the first time the construction of electrochemical potential- and pH-responsive nanofluidic diodes using a novel approach based on a controlled electrochemical polymerization of aniline on gold-coated polycarbonate asymmetric nanochannels.

View Article and Find Full Text PDF

We describe the use of asymmetric nanopores decorated with crown ethers for constructing robust signal-responsive chemical devices. The modification of single conical nanopores with 18-crown-6 units led to a nanodevice whose electronic readout, derived from the transmembrane ion current, can be finely tuned over a wide range of K(+) concentrations. The electrostatic characteristics of the nanopore environment arising from host-guest ion-recognition processes taking place on the pore walls are responsible for tuning the transmembrane ionic transport and the rectification properties of the pore.

View Article and Find Full Text PDF

The ability to modulate the surface chemical characteristics of solid-state nanopores is of great interest as it provides the means to control the macroscopic response of nanofluidic devices. For instance, controlling surface charge and polarity of the pore walls is one of the most important applications of surface modification that is very relevant to attain accurate control over the transport of ions through the nanofluidic architecture. In this work, we describe a new integrative chemical approach to fabricate nanofluidic diodes based on the self-polymerization of dopamine (PDOPA) on asymmetric track-etched nanopores.

View Article and Find Full Text PDF