A pentapeptide AVIFM (CAP-p5) derived from the carboxy-terminus end of cementum attachment protein was examined for its role on proliferation, differentiation, and mineralization of human periodontal ligament cells (HPLC), and for its potential to induce cementum deposition in vivo. CAP-p5 capability to induce hydroxyapatite crystal formation on demineralized dentin blocks was characterized by scanning electron microscopy, μRAMAN, and high-resolution transmission electron microscopy. The results revealed that CAP-p5 promoted cell proliferation and cell differentiation and increases alkaline phosphatase activity of HPLC and mineralization at an optimal concentration of 10 μg/mL.
View Article and Find Full Text PDFBiomed Mater
July 2024
Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype.
View Article and Find Full Text PDFFunctionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment protein (CAP-p15) adsorbed onto aTiO surfaces to promote the deposition of calcium phosphate (CaP) minerals and its impact on the adhesion and viability of human periodontal ligament cells (hPDLCs). aTiO surfaces were synthesized by magnetron sputtering technique.
View Article and Find Full Text PDFThe ectopic calcifications of non-mineralized tissues can occur in several forms throughout life, such as pulpal calcification. The presence of pulp stones is a challenge in endodontic treatment because they partially or fully obliterate the pulp chamber hindering access to root canals and their subsequent shaping. This study aimed to determine their crystallographic properties and evaluate the capacity of citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to promote the demineralization of pulp calcifications.
View Article and Find Full Text PDFThis work aims to contribute to the knowledge of human cementum protein 1 (CEMP1), its conformational characteristics and influence during the biomineralization process. The results revealed that hrCEMP1 expressed in Pichia pastoris is a 2.4% glycosylated, thermostable protein which possesses a molecular mass of 28,770 Da.
View Article and Find Full Text PDF