Detecting and screening clouds is the first step in most optical remote sensing analyses. Cloud formation is diverse, presenting many shapes, thicknesses, and altitudes. This variety poses a significant challenge to the development of effective cloud detection algorithms, as most datasets lack an unbiased representation.
View Article and Find Full Text PDFFloods are among the most destructive extreme events that exist, being the main cause of people affected by natural disasters. In the near future, estimated flood intensity and frequency are projected to increase. In this context, automatic and accurate satellite-derived flood maps are key for fast emergency response and damage assessment.
View Article and Find Full Text PDFMethane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated with the fossil fuel industry has a strong and cost-effective mitigation potential. Detection of methane plumes in remote sensing data is possible, but the existing approaches exhibit high false positive rates and need manual intervention.
View Article and Find Full Text PDFCognitive cloud computing in space (3CS) describes a new frontier of space innovation powered by Artificial Intelligence, enabling an explosion of new applications in observing our planet and enabling deep space exploration. In this framework, machine learning (ML) payloads-isolated software capable of extracting high level information from onboard sensors-are key to accomplish this vision. In this work we demonstrate, in a satellite deployed in orbit, a ML payload called 'WorldFloods' that is able to send compressed flood maps from sensed images.
View Article and Find Full Text PDFAccurately characterizing clouds and their shadows is a long-standing problem in the Earth Observation community. Recent works showcase the necessity to improve cloud detection methods for imagery acquired by the Sentinel-2 satellites. However, the lack of consensus and transparency in existing reference datasets hampers the benchmarking of current cloud detection methods.
View Article and Find Full Text PDFApplications such as disaster management enormously benefit from rapid availability of satellite observations. Traditionally, data analysis is performed on the ground after being transferred-downlinked-to a ground station. Constraints on the downlink capabilities, both in terms of data volume and timing, therefore heavily affect the response delay of any downstream application.
View Article and Find Full Text PDFSpaceborne Earth observation is a key technology for flood response, offering valuable information to decision makers on the ground. Very large constellations of small, nano satellites- 'CubeSats' are a promising solution to reduce revisit time in disaster areas from days to hours. However, data transmission to ground receivers is limited by constraints on power and bandwidth of CubeSats.
View Article and Find Full Text PDF