The canonical arsRBC genes of the ars1 operon in Pseudomonas putida KT2440, which confer tolerance to arsenate and arsenite, are followed by a series of additional ORFs culminating in phoN1. The phoN1 gene encodes an acetyltransferase that imparts resistance to the glutamine synthetase inhibitor herbicide phosphinothricin (PPT). The co-expression of phoN1 and ars genes in response to environmental arsenic, along with the physiological effects, was analysed through transcriptomics of cells exposed to the oxyanion and phenotypic characterization of P.
View Article and Find Full Text PDFPhthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants.
View Article and Find Full Text PDFThe MHYT domain, identified over two decades ago for its potential to detect diatomic gases like CO, O2 or NO, has awaited experimental validation as a protein sensory domain. Here, we characterize the MHYT domain-containing transcriptional regulator CoxC, which governs the expression of the cox genes responsible for aerobic CO oxidation in the carboxidotrophic bacterium Afipia carboxidovorans OM5. The C-terminal LytTR-type DNA-binding domain of CoxC binds to an operator region consisting of three direct repeats sequences overlapping the -35 box at the target PcoxB promoter, which is consistent with the role of CoxC as a specific transcriptional repressor of the cox genes.
View Article and Find Full Text PDFAn efficient and cheap energization of microbial biocatalysts is essential in current biotechnological processes. A promising alternative to the use of common organic or inorganic electron donors is the semiconductor nanoparticles (SNs) that absorb light and transfer electrons (photoelectrons) behaving as artificial photosynthetic systems (biohybrid systems). Excited photoelectrons generated by illuminated SNs are highly reductive and readily accepted by membrane-bound proteins and electron shuttles to drive specific cell reduction processes and energy generation in microbes.
View Article and Find Full Text PDFProkaryotic tolerance to inorganic arsenic is a widespread trait habitually determined by operons encoding an As (III)-responsive repressor (ArsR), an As (V)-reductase (ArsC), and an As (III)-export pump (ArsB), often accompanied by other complementary genes. Enigmatically, the genomes of many environmental bacteria typically contain two or more copies of this basic genetic device . To shed some light on the logic of such apparently unnecessary duplication(s) we have inspected the regulation-together and by separate-of the two clusters borne by the soil bacterium strain KT2440, in particular the cross talk between the two repressors ArsR1/ArsR2 and the respective promoters.
View Article and Find Full Text PDFStrategies to control the levels of key enzymes of bacterial metabolism are commonly based on the manipulation of gene of interest within the target pathway. The development of new protocols towards the manipulation of biochemical processes is still a major challenge in the field of metabolic engineering. On this background, the FENIX () system allows for the post-translational regulation of protein levels, providing both independent control of the steady-state protein amounts and inducible accumulation of target proteins.
View Article and Find Full Text PDFArsenic is a toxic element widely distributed in nature, but numerous bacteria are able to resist its toxicity mainly through the genes encoding an arsenate reductase and an arsenite efflux pump. Some "arsenotrophic" bacteria are also able to use arsenite as energy supplier during autotrophic growth by coupling anaerobic arsenite oxidation the gene products to nitrate respiration or photosynthesis. Here, we have demonstrated that sp.
View Article and Find Full Text PDFThe anaerobic degradation of benzoate in bacteria involves the benzoyl-CoA central pathway. strains are a major group of anaerobic benzoate degraders, and the transcriptional regulation of the genes was extensively studied in sp. CIB.
View Article and Find Full Text PDFWe have identified and characterized the AccS multidomain sensor kinase that mediates the activation of the AccR master regulator involved in carbon catabolite repression (CCR) of the anaerobic catabolism of aromatic compounds in sp. CIB. A truncated AccS protein that contains only the soluble C-terminal autokinase module (AccS') accounts for the succinate-dependent CCR control assays with purified AccS' revealed its autophosphorylation, phosphotransfer from AccS'∼P to the Asp60 residue of AccR, and the phosphatase activity toward its phosphorylated response regulator, indicating that the equilibrium between the kinase and phosphatase activities of AccS' may control the phosphorylation state of the AccR transcriptional regulator.
View Article and Find Full Text PDFMost of the current methods for controlling the formation rate of a key protein or enzyme in cell factories rely on the manipulation of target genes within the pathway. In this article, we present a novel synthetic system for post-translational regulation of protein levels, FENIX, which provides both independent control of the steady-state protein level and inducible accumulation of target proteins. The FENIX device is based on the constitutive, proteasome-dependent degradation of the target polypeptide by tagging with a short synthetic, hybrid NIa/SsrA amino acid sequence in the C-terminal domain.
View Article and Find Full Text PDFIn this work, we explore the refactoring of the circuitry of λ phage by engineering a new-to-nature regulator that responds to an ad hoc input signal that behaves orthogonal with respect to the host cell. We tailored a chimeric regulator, termed Qλ, between the CI protein of the λ phage and the BzdR repressor from Azoarcus sp. strain CIB that responds to benzoyl-CoA.
View Article and Find Full Text PDFFructose-1-phosphate (F1P) is the preferred effector of the catabolite repressor/activator (Cra) protein of the soil bacterium Pseudomonas putida but its ability to bind other metabolic intermediates in vivo is unclear. The Cra protein of this microorganism (Cra(PP)) was submitted to mobility shift assays with target DNA sequences (the PfruB promoter) and candidate effectors fructose-1,6-bisphosphate (FBP), glucose 6-phosphate (G6P), and fructose-6-phosphate (F6P). 1 mM F1P was sufficient to release most of the Cra protein from its operators but more than 10 mM of FBP or G6P was required to free the same complex.
View Article and Find Full Text PDFThe Standard European Vector Architecture (SEVA) toolkit is a simple and powerful resource for constructing optimal plasmid vectors based on a backbone and three interchangeable modules flanked by uncommon restriction sites. Functional modules encode several origins of replication, diverse antibiotic selection markers, and a variety of cargoes with different applications. The backbone and DNA modules have been minimized and edited for flaws in their sequence and/or functionality.
View Article and Find Full Text PDFThe genome of the soil bacterium Pseudomonas putida KT2440 bears two virtually identical arsRBCH operons putatively encoding resistance to inorganic arsenic species. Single and double chromosomal deletions in each of these ars clusters of this bacterium were tested for arsenic sensitivity and found that the contribution of each operon to the resistance to the metalloid was not additive, as either cluster sufficed to endow cells with high-level resistance. However, otherwise identical traits linked to each of the ars sites diverged when temperature was decreased.
View Article and Find Full Text PDFThe evolution of transcriptional regulators through the recruitment of DNA-binding domains by enzymes is a widely held notion. However, few experimental approaches have directly addressed this hypothesis. Here we report the reconstruction of a plausible pathway for the evolution of an enzyme into a transcriptional regulator.
View Article and Find Full Text PDFWe studied the possible impact of genomic projects by comparing the number of published articles before and after the completion of the project. We found that for most species, there is no significant change in the number of citations. Also our study remarks the growing importance of taxonomy as main motivation for the sequencing of genomes.
View Article and Find Full Text PDFThe 'Standard European Vector Architecture' database (SEVA-DB, http://seva.cnb.csic.
View Article and Find Full Text PDFWe have studied for the first time the transcriptional regulatory circuit that controls the expression of the box genes encoding the aerobic hybrid pathway used to assimilate benzoate via coenzyme A (CoA) derivatives in bacteria. The promoters responsible for the expression of the box cluster in the β-proteobacterium Azoarcus sp., their cognate transcriptional repressor, the BoxR protein, and the inducer molecule (benzoyl-CoA) have been characterized.
View Article and Find Full Text PDFAlthough the genome of Pseudomonas putida KT2440 encodes an orthologue of the crp gene of Escherichia coli (encoding the cAMP receptor protein), the regulatory scope of this factor seems to be predominantly co-opted in this bacterium for controlling non-metabolic functions. In order to investigate the reasons for such a functional divergence in otherwise nearly identical proteins, the Crp regulator of P. putida (Crp(P.
View Article and Find Full Text PDFThe BzdR transcriptional regulator that controls the P(N) promoter responsible for the anaerobic catabolism of benzoate in Azoarcus sp. CIB constitutes the prototype of a new subfamily of transcriptional regulators. Here, we provide some insights about the functional-structural relationships of the BzdR protein.
View Article and Find Full Text PDFAromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis.
View Article and Find Full Text PDFThe expression of the bzd genes involved in the anaerobic degradation of benzoate in Azoarcus sp. CIB is controlled by the specific BzdR transcriptional repressor at the P(N) promoter. This catabolic promoter is also subject to catabolite repression by some organic acids.
View Article and Find Full Text PDFThe role of oxygen in the transcriptional regulation of the PN promoter that controls the bzd operon involved in the anaerobic catabolism of benzoate in the denitrifying Azoarcus sp. strain CIB has been investigated. In vivo experiments using PN::lacZ translational fusions, in both Azoarcus sp.
View Article and Find Full Text PDFThe cellular proteome shows a dynamic profile and is subjected to changes in response to various stimuli and disease progression. Lung cancer remains the leading cause of cancer death in industrialized countries. In an attempt to find new disease markers, patients suffering from lung carcinoma have been selected to achieve differential protein expression patterns between normal and neoplasic tissue.
View Article and Find Full Text PDF