Laser scanning based on Micro-Electro-Mechanical Systems (MEMS) scanners has become very attractive for biomedical endoscopic imaging, such as confocal microscopy or Optical Coherence Tomography (OCT). These scanners are required to be fast to achieve real-time image reconstruction while working at low actuation voltage to comply with medical standards. In this context, we report a 2-axis Micro-Electro-Mechanical Systems (MEMS) electrothermal micro-scannercapable of imaging large fields of view at high frame rates, e.
View Article and Find Full Text PDFThe association of microneedles with electric pulses causing electroporation could result in an efficient and less painful delivery of drugs and DNA into the skin. Hollow conductive microneedles were used for (1) needle-free intradermal injection and (2) electric pulse application in order to achieve electric field in the superficial layers of the skin sufficient for electroporation. Microneedle array was used in combination with a vibratory inserter to disrupt the stratum corneum, thus piercing the skin.
View Article and Find Full Text PDFIt has been reported previously that electric pulses of sufficiently high voltage and short duration can permeabilize the membranes of various organelles inside living cells. In this article, we describe electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. The cells were exposed to short, high-voltage electric pulses (from 1 to 20 pulses, 60 ns, 50 kV/cm, repetition frequency 1 kHz).
View Article and Find Full Text PDF