This study investigates the goal/habit imbalance theory of compulsion in obsessive-compulsive disorder (OCD), which postulates enhanced habit formation, increased automaticity, and impaired goal/habit arbitration. It directly tests these hypotheses using newly developed behavioral tasks. First, OCD patients and healthy participants were trained daily for a month using a smartphone app to perform chunked action sequences.
View Article and Find Full Text PDFJosephson parametric amplifiers (JPAs) approaching quantum-limited noise performance have been instrumental in enabling high fidelity readout of superconducting qubits and, recently, semiconductor quantum dots (QDs). We propose that the quantum capacitance arising in electronic two-level systems (the dual of Josephson inductance) can provide an alternative dissipationless nonlinear element for parametric amplification. We experimentally demonstrate phase-sensitive parametric amplification using a QD-reservoir electron transition in a CMOS nanowire split-gate transistor embedded in a 1.
View Article and Find Full Text PDFSpins in silicon quantum devices are promising candidates for large-scale quantum computing. Gate-based sensing of spin qubits offers a compact and scalable readout with high fidelity, however, further improvements in sensitivity are required to meet the fidelity thresholds and measurement timescales needed for the implementation of fast feedback in error correction protocols. Here, we combine radio-frequency gate-based sensing at 622 MHz with a Josephson parametric amplifier, that operates in the 500-800 MHz band, to reduce the integration time required to read the state of a silicon double quantum dot formed in a nanowire transistor.
View Article and Find Full Text PDFElectron spins in silicon quantum dots provide a promising route towards realizing the large number of coupled qubits required for a useful quantum processor. For the implementation of quantum algorithms and error detection, qubit measurements are ideally performed in a single shot, which is presently achieved using on-chip charge sensors, capacitively coupled to the quantum dots. However, as the number of qubits is increased, this approach becomes impractical due to the footprint and complexity of the charge sensors, combined with the required proximity to the quantum dots.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2017
We report on individual-InAs nanowire optoelectronic devices which can be tailored to exhibit either negative or positive photoconductivity (NPC or PPC). The NPC photoresponse time and magnitude is found to be highly tunable by varying the nanowire diameter under controlled growth conditions. Using hysteresis characterization, we decouple the observed photoexcitation-induced hot electron trapping from conventional electric field-induced trapping to gain a fundamental insight into the interface trap states responsible for NPC.
View Article and Find Full Text PDFQuantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate.
View Article and Find Full Text PDFWe report the dispersive readout of the spin state of a double quantum dot formed at the corner states of a silicon nanowire field-effect transistor. Two face-to-face top-gate electrodes allow us to independently tune the charge occupation of the quantum dot system down to the few-electron limit. We measure the charge stability of the double quantum dot in DC transport as well as dispersively via in situ gate-based radio frequency reflectometry, where one top-gate electrode is connected to a resonator.
View Article and Find Full Text PDFWe propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET.
View Article and Find Full Text PDFElectrical detection of spins is an essential tool for understanding the dynamics of spins, with applications ranging from optoelectronics and spintronics, to quantum information processing. For electron spins bound to donors in silicon, bulk electrically detected magnetic resonance has relied on coupling to spin readout partners such as paramagnetic defects or conduction electrons, which fundamentally limits spin coherence times. Here we demonstrate electrical detection of donor electron spin resonance in an ensemble by transport through a silicon device, using optically driven donor-bound exciton transitions.
View Article and Find Full Text PDFQuantum computation requires a qubit-specific measurement capability to readout the final state of individual qubits. Promising solid-state architectures use external readout electrometers but these can be replaced by a more compact readout element, an in situ gate sensor. Gate-sensing couples the qubit to a resonant circuit via a gate and probes the qubit's radiofrequency polarizability.
View Article and Find Full Text PDFWe present a combined experimental-theoretical demonstration of the energy spectrum and exchange coupling of an isolated donor pair in a silicon nanotransistor. The molecular hybridization of the atomic orbitals leads to an enhancement of the one- and two-electron binding energies and charging energy with respect to the single donor case, a desirable feature for quantum electronic devices. Our hydrogen molecule-like model based on a multivalley central-cell corrected effective mass theory incorporating a full configuration interaction treatment of the 2-electron spectrum matches the measured data for an arsenic diatomic molecule with interatomic distance R = 2.
View Article and Find Full Text PDF