Publications by authors named "Gonzalez-Quintial R"

Endosomal Toll-like receptors (eTLRs) are essential for the sensing of non-self through RNA and DNA detection. Here, using spatiotemporal analysis of vesicular dynamics, super-resolution microscopy studies, and functional assays, we show that endomembrane defects associated with the deficiency of the small GTPase Rab27a cause delayed eTLR ligand recognition, defective early signaling, and impaired cytokine secretion. Rab27a-deficient neutrophils show retention of eTLRs in amphisomes and impaired ligand internalization.

View Article and Find Full Text PDF

A function-impairing mutation (feeble) or genomic deletion of SLC15A4 abolishes responses of nucleic acid–sensing endosomal toll-like receptors (TLRs) and significantly reduces disease in mouse models of lupus. Here, we demonstrate disease reduction in homozygous and even heterozygous Slc15a4 feeble mutant BXSB male mice with a Tlr7 gene duplication. In contrast to SLC15A4, a function-impairing mutation of SLC15A3 did not diminish type I interferon (IFN-I) production by TLR-activated plasmacytoid dendritic cells (pDCs), indicating divergence of function between these homologous SLC15 family members.

View Article and Find Full Text PDF

Considerable evidence indicates that autoimmune disease expression depends on both genetic and environmental factors. Among potential environmental triggers, occupational airway exposure to crystalline silica and virus infections have been linked to lupus and other autoimmune diseases in both humans and mouse models. Here, we hypothesized that combined silica and virus exposures synergize and induce autoimmune manifestations more effectively than single exposure to either of these factors, particularly in individuals with low genetic predisposition.

View Article and Find Full Text PDF

Viruses have long been implicated in the pathogenesis of autoimmunity, yet their contribution remains circumstantial partly due to the lack of well-documented information on infections prior to autoimmune disease onset. Here, we used the lymphocytic choriomeningitis virus (LCMV) as a model to mechanistically dissect the impact of viral infection on lupus-like autoimmunity. Virus persistence strongly enhanced disease in mice with otherwise weak genetic predisposition but not in highly predisposed or non-autoimmune mice, indicating a synergistic interplay between genetic susceptibility and virus infection.

View Article and Find Full Text PDF

Type I IFN and nucleic acid-sensing TLRs are both strongly implicated in the pathogenesis of lupus, with most patients expressing IFN-induced genes in peripheral blood cells and with TLRs promoting type I IFNs and autoreactive B cells. About a third of systemic lupus erythematosus patients, however, lack the IFN signature, suggesting the possibility of type I IFN-independent mechanisms. In this study, we examined the role of type I IFN and TLR trafficking and signaling in xenobiotic systemic mercury-induced autoimmunity (HgIA).

View Article and Find Full Text PDF

Hemorrhagic fever (HF) viruses, such as Lassa, Ebola, and dengue viruses, represent major human health risks due to their highly contagious nature, the severity of the clinical manifestations induced, the lack of vaccines, and the very limited therapeutic options currently available. Appropriate animal models are obviously critical to study disease pathogenesis and develop efficient therapies. We recently reported that the clone 13 (Cl13) variant of the lymphocytic choriomeningitis virus (LCMV-Cl13), a prototype arenavirus closely related to Lassa virus, causes in some mouse strains endothelial damage, vascular leakage, platelet loss, and death, mimicking pathological aspects typically observed in Lassa and other HF syndromes.

View Article and Find Full Text PDF

We have devised a method of using intracellular combinatorial libraries to select antibodies that control cell fates. Many agonist antibodies have been selected with this method, and the process appears to be limited only by the availability of a phenotypic selection system. We demonstrate the utility of this approach to discover agonist antibodies that engage an unanticipated target and regulate macrophage polarization by selective induction of anti-inflammatory M2 macrophages.

View Article and Find Full Text PDF

IL-7 is known to be vital for T cell homeostasis but has previously been presumed to be dispensable for TCR-induced activation. Here, we show that IL-7 is critical for the initial activation of CD4(+) T cells in that it provides some of the necessary early signaling components, such as activated STAT5 and Akt. Accordingly, short-term in vivo IL-7Rα blockade inhibited the activation and expansion of autoantigen-specific CD4(+) T cells and, when used to treat experimental autoimmune encephalomyelitis (EAE), prevented and ameliorated disease.

View Article and Find Full Text PDF

The outcome of a viral infection reflects the balance between virus virulence and host susceptibility. The clone 13 (Cl13) variant of lymphocytic choriomeningitis virus--a prototype of Old World arenaviruses closely related to Lassa fever virus--elicits in C57BL/6 and BALB/c mice abundant negative immunoregulatory molecules, associated with T-cell exhaustion, negligible T-cell-mediated injury, and high virus titers that persist. Conversely, here we report that in NZB mice, despite the efficient induction of immunoregulatory molecules and high viremia, Cl13 generated a robust cytotoxic T-cell response, resulting in thrombocytopenia, pulmonary endothelial cell loss, vascular leakage, and death within 6-8 d.

View Article and Find Full Text PDF

In vitro evidence suggests that plasmacytoid dendritic cells (pDCs) are intimately involved in the pathogenesis of lupus. However, it remains to be determined whether these cells are required in vivo for disease development, and whether their contribution is restricted to hyperproduction of type I IFNs. To address these issues, we created lupus-predisposed mice lacking the IFN regulatory factor 8 (IRF8) or carrying a mutation that impairs the peptide/histidine transporter solute carrier family 15, member 4 (SLC15A4).

View Article and Find Full Text PDF

The demonstration in humans and mice that nucleic acid-sensing TLRs and type I IFNs are essential disease mediators is a milestone in delineating the mechanisms of lupus pathogenesis. In this study, we show that Ifnb gene deletion does not modify disease progression in NZB mice, thereby strongly implicating IFN-α subtypes as the principal pathogenic effectors. We further document that long-term treatment of male BXSB mice with an anti-IFN-α/β receptor Ab of mouse origin reduced serologic, cellular, and histologic disease manifestations and extended survival, suggesting that disease acceleration by the Tlr7 gene duplication in this model is mediated by type I IFN signaling.

View Article and Find Full Text PDF

The activation of immune cells is mediated by a network of signaling proteins that can undergo post-translational modifications critical for their activity. Methylation of nucleic acids or proteins can have major effects on gene expression as well as protein repertoire diversity and function. Emerging data indicate that indeed many immunologic functions, particularly those of T cells, including thymic education, differentiation and effector function are highly dependent on methylation events.

View Article and Find Full Text PDF

Lupus is characterized by disturbances in lymphocyte homeostasis, as demonstrated by the marked accumulation of activated/memory T cells. Here, we provide evidence that proliferation of the CD8+ precursors for the accumulating CD4⁻CD8⁻ T cells in MRL-Fas(lpr) lupus-predisposed mice is, in part, driven by commensal antigens. The ensuing lymphadenopathy is associated with increased production of IL-7 due to expansion of fibroblastic reticular cells, the primary source of this cytokine.

View Article and Find Full Text PDF

During a T cell-dependent Ab response, B cells undergo Ab class switching and V region hypermutation, with the latter process potentially rendering previously innocuous B cells autoreactive. Class switching and hypermutation are temporally and anatomically linked with both processes dependent on the enzyme, activation-induced deaminase, and occurring principally, but not exclusively, in germinal centers. To understand tolerance regulation at this stage, we generated a new transgenic mouse model expressing a membrane-tethered gamma2a-reactive superantigen (gamma2a-macroself Ag) and assessed the fate of emerging IgG2a-expressing B cells that have, following class switch, acquired self-reactivity of the Ag receptor to the macroself-Ag.

View Article and Find Full Text PDF

Evidence strongly suggests that excessive or protracted signaling, or both, by cell-surface or intracellular innate immune receptors is central to the pathogenesis of most autoimmune and autoinflammatory rheumatic diseases. The initiation of aberrant innate and adaptive immune responses in autoimmune diseases can be triggered by microbes and, at times, by endogenous molecules--particularly nucleic acids and related immune complexes--under sterile conditions. By contrast, most autoinflammatory syndromes are generally dependent on germline or de novo gene mutations that cause or facilitate inflammasome assembly.

View Article and Find Full Text PDF

The discovery of molecular sensors that enable eukaryotes to recognize microbial pathogens and their products has been a key advance in our understanding of innate immunity. A tripartite sensing apparatus has developed to detect danger signals from infectious agents and damaged tissues, resulting in an immediate but short-lived defense response. This apparatus includes Toll-like receptors, retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, and nucleotide-binding and oligomerization domain-like receptors; adaptors, kinases and other signaling molecules are required to elicit effective responses.

View Article and Find Full Text PDF

Regulatory T (T(reg)) cells expressing forkhead box P3 (Foxp3) arise during thymic selection among thymocytes with modestly self-reactive T cell receptors. In vitro studies suggest Foxp3 can also be induced among peripheral CD4(+) T cells in a cytokine dependent manner. T(reg) cells of thymic or peripheral origin may serve different functions in vivo, but both populations are phenotypically indistinguishable in wild-type mice.

View Article and Find Full Text PDF

Acute lymphopenia-induced homeostatic proliferation (HP) of T cells promotes antitumor immunity, but the mechanism is unclear. We hypothesized that this is due to a lack of inhibitory signals that allows activation of T cells with low affinity for self-antigens. Tumors resist immunity in part by expressing inhibitory molecules such as PD-1 ligand 1 (PD-L1), B7-H4, and TGF-beta.

View Article and Find Full Text PDF

Among T cell subsets, gamma delta T cells uniquely display an Ag receptor-based tissue distribution, but what defines their preferential homing and homeostasis is unknown. To address this question, we studied the resources that control gamma delta T cell homeostasis in secondary lymphoid organs. We found that gamma delta and alpha beta T cells are controlled by partially overlapping resources, because acute homeostatic proliferation of gamma delta T cells was inhibited by an intact alpha beta T cell compartment, and both populations were dependent on IL-7 and IL-15.

View Article and Find Full Text PDF

Efforts to develop effective anti-tumor immunotherapies are hampered by the difficulty of overcoming tolerance against tumor antigens, which in most instances are normal gene products that are over-expressed, preferentially expressed or re-expressed in cancer cells. Considering that lymphopenia-induced homeostatic T cell proliferation is mediated by self-peptide/MHC recognition and that the expanded cells acquire some effector functions, we hypothesized that this process could be used to break tolerance against tumor antigens. Studies by us and others in several mouse models demonstrated that availability of tumor antigens during homeostatic T cell proliferation indeed leads to effective anti-tumor autoimmunity with specificity and memory.

View Article and Find Full Text PDF

Objective: To generate a human-mouse xenochimeric model where human cells remain clustered in the animal to optimize their interactions and recovery.

Materials And Methods: Severe combined immune deficient mice (SCID) were xenografted subcutaneously with human adult tonsil pieces (hu-ton-SCID mice). Such animals were: (a) compared with those receiving tonsil cells in suspension, and (b) immunized with de novo and recall antigens.

View Article and Find Full Text PDF

Identification of expanded clones engaged in immune and autoimmune responses is still imperfect, since they are often diluted by irrelevant cells expressing diverse specificities. To efficiently characterize T cell receptors expressed by clonally expanded lymphocytes in rheumatoid arthritis (RA) and other inflammatory conditions, we developed an assay system, termed sequence enrichment nuclease assay (SENA). Key elements of SENA are the efficiency of heat-denatured DNA strand reassociation, which increases exponentially with concentration, and the elimination of unhybridized sequences by single-strand-specific DNase.

View Article and Find Full Text PDF

Following exposure to some types of antigen (superantigens), responsive T cells expand and then decline in numbers, a phenomenon that has been called 'peripheral deletion'. This process may play a role in limiting autoimmune reactions and in the maintenance of immune homeostasis. Here we describe experiments on peripheral deletion in mice carrying the lpr/lpr defect, which has been shown to be due to defective production of the CD95/Fas molecule.

View Article and Find Full Text PDF

To define age-associated alterations in the immune system at the molecular level, we have analyzed TCR V beta gene expression patterns at the fetal, neonatal, adult, and advanced ages of mice. In contrast to V gamma and VH genes, V beta genes rearranged without any preference related to their chromosomal organization. Endogenous superantigen-mediated clonal deletions were registered for the first time at the neonatal stage, presumably reflecting the late developmental appearance of these molecules.

View Article and Find Full Text PDF