Publications by authors named "Gonzalez-Ibeas D"

We performed genomic analyses on species and varieties of the genus Citrus to identify several determinants of domestication, based on the pattern of pummelo [Citrus maxima (Burr. f) Merr] and mandarin (Citrus reticulata Blanco) admixture into the ancestral genome, as well as population genetic tests at smaller scales. Domestication impacted gene families regulating pivotal components of citrus flavor (such as acidity) because in edible mandarin varieties, chromosome areas with negative Tajimas values were enriched with genes associated with the regulation of citric acid.

View Article and Find Full Text PDF

We performed genomic analyses on wild species of the genus Citrus to identify major determinants of evolution. The most notable effect occurred on the pathogen-defense genes, as observed in many other plant genera. The gene space was also characterized by changes in gene families intimately related to relevant biochemical properties of citrus fruit, such as pectin modifying enzymes, HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, and O-methyltransferases.

View Article and Find Full Text PDF

It is well described that viral infections stimulate the emission of plant volatiles able to recruit viral vectors thereby promoting virus spread. In contrast, much less is known on the effects that emitted volatiles may have on the metabolism of healthy neighboring plants, which are potential targets for new infections through vector transmission. Watermelon mosaic virus (WMV) (genus , family ) is an aphid-transmitted virus endemic in cucurbit crops worldwide.

View Article and Find Full Text PDF

Background: IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce.

View Article and Find Full Text PDF

subsp. serovar Typhimurium WG49 is widely used for enumeration of F-specific RNA (F-RNA) coliphages in water. WG5 is broadly used for the detection and enumeration of somatic coliphages in water samples.

View Article and Find Full Text PDF

Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the subgenus The populations of many species are challenged by native and introduced pathogens, native insects, and abiotic factors.

View Article and Find Full Text PDF
Article Synopsis
  • A reference genome for Coastal Douglas-fir has been established, marking a significant advancement in Pinaceae family genomics.
  • The genome assembly features exceptional quality, with contig N50 at 44,136 bp and scaffold N50 at 340,704 bp, surpassing other conifer genomes, partly due to improved sequencing technologies and lower repeat content.
  • Comparative analysis shows distinct gene-family dynamics in Douglas-fir compared to angiosperms, revealing insights into traits like shade tolerance and contributing to our understanding of plant evolutionary differences.
View Article and Find Full Text PDF

Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P.

View Article and Find Full Text PDF

Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome.

View Article and Find Full Text PDF
Article Synopsis
  • The Persian walnut is a key nut species with high nutritional value due to its polyphenolic compounds, but its full biosynthetic pathways remain largely unexplored.
  • Researchers sequenced the genome of the 'Chandler' cultivar, creating a 667-Mbp assembly revealing 32,498 gene models, including two polyphenol oxidase genes (JrPPO1 and JrPPO2).
  • The genome provides vital insights into polyphenol synthesis and serves as a tool for enhancing breeding and understanding complex traits in J. regia.
View Article and Find Full Text PDF

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome.

View Article and Find Full Text PDF

Resistance to Watermelon mosaic virus (WMV) in melon (Cucumis melo L.) accession TGR-1551 is characterized by a significant reduction in virus titer, and is inherited as a recessive, loss-of-susceptibility allele. We measured virus RNA accumulation in TGR-1551 plants and a susceptible control ('Tendral') by real-time quantitative polymerase chain reaction, and also profiled the expression of 17,443 unigenes represented on a melon microarray over a 15-day time course.

View Article and Find Full Text PDF

Background: Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs).

View Article and Find Full Text PDF

Background: Melon (Cucumis melo) is a horticultural specie of significant nutritional value, which belongs to the Cucurbitaceae family, whose economic importance is second only to the Solanaceae. Its small genome of approx. 450 Mb coupled to the high genetic diversity has prompted the development of genetic tools in the last decade.

View Article and Find Full Text PDF

Plant virus infection involves the production of viral small RNAs (vsRNAs) with the potential to associate with distinct Argonaute (AGO)-containing silencing complexes and mediate diverse silencing effects on RNA and chromatin. We used multiplexed, high-throughput pyrosequencing to profile populations of vsRNAs from plants infected with viruses from different genera. Sense and antisense vsRNAs of 20 to 24 nucleotides (nts) spread throughout the entire viral genomes in an overlapping configuration; virtually all genomic nucleotide positions were represented in the data set.

View Article and Find Full Text PDF

Background: There are few genomic tools available in melon (Cucumis melo L.), a member of the Cucurbitaceae, despite its importance as a crop. Among these tools, genetic maps have been constructed mainly using marker types such as simple sequence repeats (SSR), restriction fragment length polymorphisms (RFLP) and amplified fragment length polymorphisms (AFLP) in different mapping populations.

View Article and Find Full Text PDF

Translation initiation factors are universal determinants of plant susceptibility to RNA viruses, but the underlying mechanisms are poorly understood. Here, we show that a sequence in the 3' untranslated region (3'-UTR) of a viral genome that is responsible for overcoming plant eIF4E-mediated resistance (virulence determinant) functions as a 3' cap-independent translational enhancer (3'-CITE). The virus/plant pair studied here is Melon necrotic spot virus (MNSV) and melon, for which a recessive resistance controlled by melon eIF4E was previously described.

View Article and Find Full Text PDF

Torrao or torrado is an emerging disease that is causing serious economic losses in tomato crops of southeastern Spain. The causal agent has been shown to be a new picorna-like plant virus, tentatively named Tomato torrado virus (ToTV) (4). By using trap tomato plants in a greenhouse affected by torrado located in the Murcia Region of Spain, we obtained a ToTV isolate (ToTV-CE) that we have biologically and molecularly characterized.

View Article and Find Full Text PDF

Background: Melon (Cucumis melo L.) is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species.

View Article and Find Full Text PDF