Publications by authors named "Gonzalez-Fortes G"

Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region.

View Article and Find Full Text PDF

To reconstruct aspects of human demographic history, linguistics and genetics complement each other, reciprocally suggesting testable hypotheses on population relationships and interactions. Relying on a linguistic comparative method based on syntactic data, here we focus on the non-straightforward relation of genes and languages among Finno-Ugric (FU) speakers, in comparison to their Indo-European (IE) and Altaic (AL) neighbors. Syntactic analysis, in agreement with the indications of more traditional linguistic levels, supports at least three distinct clusters, corresponding to these three Eurasian families; yet, the outliers of the FU group show linguistic convergence with their geographical neighbors.

View Article and Find Full Text PDF

Being at the western fringe of Europe, Iberia had a peculiar prehistory and a complex pattern of Neolithization. A few studies, all based on modern populations, reported the presence of DNA of likely African origin in this region, generally concluding it was the result of recent gene flow, probably during the Islamic period. Here, we provide evidence of much older gene flow from Africa to Iberia by sequencing whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP (from the Middle Neolithic to the Bronze Age).

View Article and Find Full Text PDF

Genetic studies that include ancient samples are often hampered by the low amount of endogenous DNA that ancient samples often contain, relative to co-extracted "contaminant" DNA from other organisms. One approach to mitigate this challenge is to perform hybridization-based capture of target genomic regions using DNA or RNA baits. Such baits are designed to have high sequence similarity to the target genomic regions and can reduce the off-target fraction in DNA sequencing libraries.

View Article and Find Full Text PDF

For many archaeological and paleontological samples, the relative content of endogenous compared to contaminant DNA is low. In such cases, enriching sequencing libraries for endogenous DNA, prior to sequencing can make the final research project more cost-effective. Here, we present an in-solution enrichment protocol based on homemade baits that can be applied to recover complete nuclear genomes from ancient remains.

View Article and Find Full Text PDF

The transition from hunting and gathering to farming involved profound cultural and technological changes. In Western and Central Europe, these changes occurred rapidly and synchronously after the arrival of early farmers of Anatolian origin [1-3], who largely replaced the local Mesolithic hunter-gatherers [1, 4-6]. Further east, in the Baltic region, the transition was gradual, with little or no genetic input from incoming farmers [7].

View Article and Find Full Text PDF
Article Synopsis
  • Little is known about Sardinia's genetic history due to a lack of ancient human remains before the Neolithic period.
  • Modern Sardinians exhibit unique genetic characteristics, being closely related to early European farmers while showing high internal diversity.
  • The study presents the oldest mitochondrial DNA from Sardinia, confirming a Mesolithic presence, but suggests that early inhabitants contributed little to modern Sardinian genetics, which mainly stems from Neolithic migrations.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers analyzed ancient DNA from 44 individuals in the Near East, covering a time span of about 12,000 to 1,400 BC, from early hunter-gatherers to Bronze Age farmers.
  • They discovered that early Near Eastern populations had about half of their ancestry from a unique 'Basal Eurasian' lineage with minimal Neanderthal mixing.
  • By the Bronze Age, distinct populations from regions like the Levant and Zagros had intermingled with each other and European hunter-gatherers, leading to reduced genetic differences and significant migrations of these agricultural groups into Europe and other regions.
View Article and Find Full Text PDF

We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.

View Article and Find Full Text PDF

The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Age burials including two to high (~22 × ) and seven to ~1 × coverage, to investigate the impact of these on Europe's genetic landscape. These data suggest genomic shifts with the advent of the Neolithic, Bronze and Iron Ages, with interleaved periods of genome stability.

View Article and Find Full Text PDF

Leopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp insertion in intron 1 of TRPM1 as the potential cause.

View Article and Find Full Text PDF