ACS Appl Mater Interfaces
January 2025
Magnetic nanoparticles (NPs) are gaining significant interest in the field of biomedical functional nanomaterials because of their distinctive chemical and physical characteristics, particularly in drug delivery and magnetic hyperthermia applications. In this paper, we experimentally synthesized and characterized new FeO-based NPs, functionalizing its surface with a 5-TAMRA cadaverine modified copolymer consisting of PMAO and PEG. Despite these advancements, many combinations of NP cores and coatings remain unexplored.
View Article and Find Full Text PDFDetermining the values of various properties for new bio-inks for 3D printing is a very important task in the design of new materials. For this purpose, a large number of experimental works have been consulted, and a database with more than 1200 bioprinting tests has been created. These tests cover different combinations of conditions in terms of print pressure, temperature, and needle values, for example.
View Article and Find Full Text PDFThis work is devoted to the investigation of dielectric permittivity which is influenced by electronic, ionic, and dipolar polarization mechanisms, contributing to the material's capacity to store electrical energy. In this study, an extended dataset of 86 polymers was analyzed, and two quantitative structure-property relationship (QSPR) models were developed to predict dielectric permittivity. From an initial set of 1273 descriptors, the most relevant ones were selected using a genetic algorithm, and machine learning models were built using the Gradient Boosting Regressor (GBR).
View Article and Find Full Text PDFGlass transition temperature of polymers, Tg, is an important thermophysical property, which sometimes can be difficult to measure experimentally. In this regard, data-driven machine learning approaches are important alternatives to assess Tg values, in a high-throughput way. In this study, a large dataset of more than 900 polymers with reported glass transition temperature (T) was assembled from various public sources in order to develop a predictive model depicting the structure-property relationships.
View Article and Find Full Text PDFNeurodegenerative diseases involve progressive neuronal death. Traditional treatments often struggle due to solubility, bioavailability, and crossing the Blood-Brain Barrier (BBB). Nanoparticles (NPs) in biomedical field are garnering growing attention as neurodegenerative disease drugs (NDDs) carrier to the central nervous system.
View Article and Find Full Text PDFBackground: Warfarin is a common oral anticoagulant, and its effects vary widely among individuals. Numerous dose-prediction algorithms have been reported based on cross-sectional data generated via multiple linear regression or machine learning. This study aimed to construct an information fusion perturbation theory and machine-learning prediction model of warfarin blood levels based on clinical longitudinal data from cardiac surgery patients.
View Article and Find Full Text PDFIn recent years, alternative animal testing methods such as computational and machine learning approaches have become increasingly crucial for toxicity testing. However, the complexity and scarcity of available biomedical data challenge the development of predictive models. Combining nonlinear machine learning together with multicondition descriptors offers a solution for using data from various assays to create a robust model.
View Article and Find Full Text PDFNeurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood-brain barrier. Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention.
View Article and Find Full Text PDFThe development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study.
View Article and Find Full Text PDFBackground: Warfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability.
View Article and Find Full Text PDFThe Flaviviridae family consists of single-stranded positive-sense RNA viruses, which contains the genera , , , and . Currently, there is an outbreak of viral diseases caused by this family affecting millions of people worldwide, leading to significant morbidity and mortality rates. Advances in computational chemistry have greatly facilitated the discovery of novel drugs and treatments for diseases associated with this family.
View Article and Find Full Text PDFFamilial hypercholesterolemia (FH) is an inherited metabolic disease affecting cholesterol metabolism, with 90% of cases caused by mutations in the LDL receptor gene (LDLR), primarily missense mutations. This study aims to integrate six commonly used predictive software to create a new model for predicting LDLR mutation pathogenicity and mapping hot spot residues. Six predictive-software are selected: Polyphen-2, SIFT, MutationTaster, REVEL, VARITY, and MLb-LDLr.
View Article and Find Full Text PDFThe enantioselective Brønsted acid-catalyzed α-amidoalkylation reaction is a useful procedure is for the production of new drugs and natural products. In this context, Chiral Phosphoric Acid (CPA) catalysts are versatile catalysts for this type of reactions. The selection and design of new CPA catalysts for different enantioselective reactions has a dual interest because new CPA catalysts (tools) and chiral drugs or materials (products) can be obtained.
View Article and Find Full Text PDFMachine learning (ML) methods are used in cheminformatics processes to predict the activity of an unknown drug and thus discover new potential antibacterial drugs. This article conducts a bibliometric study to analyse the contributions of leading authors, universities/organisations and countries in terms of productivity, citations and bibliographic linkage. A sample of 1596 Scopus documents for the period 2006-2022 is the basis of the study.
View Article and Find Full Text PDFIntroduction: This report proposes the application of a new Machine Learning algorithm called Fuzzy Unordered Rules Induction Algorithm (FURIA)-C in the classification of druglike compounds with antidiabetic inhibitory ability toward the main two pharmacological targets: α-amylase and α-glucosidase.
Methods: The two obtained QSAR models were tested for classification capability, achieving satisfactory accuracy scores of 94.5% and 96.
Globally, pesticides are toxic substances with wide applications. However, the widespread use of pesticides has received increasing attention from regulatory agencies due to their various acute and chronic effects on multiple organisms. In this study, Quantitative Structure-Toxicity Relationship (QSTR) models were established using Multiple Linear Regression (MLR) and five Machine Learning (ML) algorithms to predict pesticide toxicity in Americamysis bahia.
View Article and Find Full Text PDFIn this work, the SOFT.PTML tool has been used to pre-process a ChEMBL dataset of pre-clinical assays of antileishmanial compound candidates. A comparative study of different ML algorithms, such as logistic regression (LOGR), support vector machine (SVM), and random forests (RF), has shown that the IFPTML-LOGR model presents excellent values of specificity and sensitivity (81-98%) in training and validation series.
View Article and Find Full Text PDFAntibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays >40 MNs of multiple bacteria species.
View Article and Find Full Text PDFThe parasite species of genus causes Malaria, which remains a major global health problem due to parasite resistance to available Antimalarial drugs and increasing treatment costs. Consequently, computational prediction of new Antimalarial compounds with novel targets in the proteome of sp. is a very important goal for the pharmaceutical industry.
View Article and Find Full Text PDFUntreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor () gene constitute the major cause of FH, and the high number of mutations already described in the makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of variants to help in the early diagnosis and management of FH disease.
View Article and Find Full Text PDFThe theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions.
View Article and Find Full Text PDFArtificial Intelligence/Machine Learning (AI/ML) algorithms may speed up the design of DADNP systems formed by Antibacterial Drugs (AD) and Nanoparticles (NP). In this work, we used IFPTML = Information Fusion (IF) + Perturbation-Theory (PT) + Machine Learning (ML) algorithm for the first time to study of a large dataset of putative DADNP systems composed by >165 000 ChEMBL AD assays and 300 NP assays . multiple bacteria species.
View Article and Find Full Text PDFCurr Top Med Chem
September 2021