Mutations in the gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (-DCM). The main clinical risks in -DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if mutations also cause vascular alterations that might contribute to the etiopathogenesis of -DCM, we generated and characterized mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes.
View Article and Find Full Text PDFPopulation aging and age-related cardiovascular disease (CVD) are becoming increasingly prevalent worldwide, generating a huge medical and socioeconomic burden. The complex regulation of aging and CVD and the interaction between these processes are crucially dependent on cellular stress responses. Interferon-stimulated gene-15 (ISG15) encodes a ubiquitin-like protein expressed in many vertebrate cell types that can be found both free and conjugated to lysine residues of target proteins a post-translational process termed ISGylation.
View Article and Find Full Text PDFBackground And Purpose: Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E production in inflammatory conditions. We evaluated the role of mPGES-1 in the development and the metabolic and cardiovascular alterations of obesity.
Experimental Approach: mPGES-1 and mPGES-1 mice were fed with normal or high fat diet (HFD, 60% fat).
Aims: Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that induces a reversible post-translational modification (ISGylation) and can also be secreted as a free form. ISG15 plays an essential role as host-defence response to microbial infection; however, its contribution to vascular damage associated with hypertension is unknown.
Methods And Results: Bioinformatics identified ISG15 as a mediator of hypertension-associated vascular damage.
Perivascular adipose tissue (PVAT) is increasingly being regarded as an important endocrine organ that directly impacts vessel function, structure, and contractility in obesity-associated diseases. We uncover here a role for myeloid G protein-coupled receptor kinase 2 (GRK2) in the modulation of PVAT-dependent vasodilation responses. GRK2 expression positively correlates with myeloid- (CD68) and lymphoid-specific (CD3, CD4, and CD8) markers and with leptin in PVAT from patients with abdominal aortic aneurysms.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2020
Objective: microRNAs are master regulators of gene expression with essential roles in virtually all biological processes. miR-217 has been associated with aging and cellular senescence, but its role in vascular disease is not understood. Approach and Results: We have used an inducible endothelium-specific knock-in mouse model to address the role of miR-217 in vascular function and atherosclerosis.
View Article and Find Full Text PDFBranched-chain amino acids (BCAA: leucine, isoleucine and valine) are essential amino acids implicated in glucose metabolism and maintenance of correct brain function. Elevated BCAA levels can promote an inflammatory response in peripheral blood mononuclear cells. However, there are no studies analysing the direct effects of BCAA on endothelial cells (ECs) and its possible modulation of vascular function.
View Article and Find Full Text PDFmPGES-1 (microsomal prostaglandin E synthase-1), the downstream enzyme responsible for PGE (prostaglandin E) synthesis in inflammatory conditions and oxidative stress are increased in vessels from hypertensive animals. We evaluated the role of mPGES-1-derived PGE in the vascular dysfunction and remodeling in hypertension and the possible contribution of oxidative stress. We used human peripheral blood mononuclear cells from asymptomatic patients, arteries from untreated and Ang II (angiotensin II)-infused mPGES-1 and mPGES-1 mice, and vascular smooth muscle cells exposed to PGE In human cells, we found a positive correlation between mPGES-1 mRNA and carotid intima-media thickness (=0.
View Article and Find Full Text PDFCyclooxygenase-2 (COX-2) derived-prostanoids participate in the altered vascular function and mechanical properties in cardiovascular diseases. We investigated whether regulator of calcineurin 1 (Rcan1) participates in vascular contractility and stiffness through the regulation of COX-2. For this, wild type (Rcan1) and Rcan1-deficient (Rcan1) mice untreated or treated with the COX-2 inhibitor rofecoxib were used.
View Article and Find Full Text PDFWe have investigated whether mineralocorticoid receptor activation can participate in the profibrotic effects of leptin in cardiac myofibroblasts, as well as the potential mechanisms involved. The presence of eplerenone reduced the leptin-induced increase in protein levels of collagen I, transforming growth factor β, connective tissue growth factor and galectin-3 and the levels of both total and mitochondrial of superoxide anion (O) in cardiac myofibroblasts. Likewise, the MEK/ERK inhibitor, PD98059, and the PI3/Akt inhibitor, LY294002, showed a similar pattern.
View Article and Find Full Text PDFBackground And Purpose: Prostanoids derived from COX-2 and EP receptors are involved in vascular remodelling in different cardiovascular pathologies. This study evaluates the contribution of COX-2 and EP1 receptors to vascular remodelling and function in hypertension.
Experimental Approach: Spontaneously hypertensive rats (SHR) and angiotensin II (AngII)-infused (1.