Publications by authors named "Gonzalez-Alcaraz M"

The interplay between metal contamination and climate change may exacerbate the negative impact on the soil microbiome and, consequently, on soil health and ecosystem services. We assessed the response of the microbial community of a heavy metal-contaminated soil when exposed to short-term (48 h) variations in air temperature, soil humidity or ultraviolet (UV) radiation in the absence and presence of (soil invertebrate). Each of the climate scenarios simulated significantly altered at least one of the microbial parameters measured.

View Article and Find Full Text PDF

The world population is experiencing colossal growth and thus demand for food, leading to an increase in the use of pesticides. Persistent pesticide contamination, such as carbendazim, remains a pressing environmental concern, with potentially long-term impacts on aquatic ecosystems. In the present study, was exposed to carbendazim (5 µg L) for 12 generations, with the aim of assessing gene transcription alterations induced by carbendazim (using a custom microarray).

View Article and Find Full Text PDF

Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM).

View Article and Find Full Text PDF

Abandoned metal(loid) mine tailings show inhospitable conditions for the establishment of above- and below-ground communities (e.g., high metal(loid) levels, organic matter and nutrient deficiency).

View Article and Find Full Text PDF

We analyzed the effects on a soil microbial community of short-term alterations in air temperature, soil moisture and ultraviolet radiation and assessed the role of invertebrates (species ) in modulating the community's response to these factors. The reference soil, Lufa 2.2, was incubated for 48 h, with and without invertebrates, under the following conditions: standard (20 °C + 50% water holding capacity (WHC)); increased air temperature (15-25 °C or 20-30 °C + 50% WHC); flood (20 °C + 75% WHC); drought (20 °C + 25% WHC); and ultraviolet radiation (UV) (20 °C + 50% WHC + UV).

View Article and Find Full Text PDF

This study aimed to evaluate whether the improvement in soil conditions induced by the vegetation spontaneously colonizing abandoned metal(loid) mine tailings from semiarid areas is consistent throughout seasons and to identify if the temporal variability of that conditions is of similar magnitude of that of the surrounding forests. Soil climatic (temperature and moisture), chemical (pH, electrical conductivity and water-soluble salts and metal(loid)s) and biological (water-soluble organic carbon and ammonium, microbial biomass carbon, dehydrogenase and β-glucosidase activity, organic matter decomposition and feeding activity of soil dwelling organisms) parameters were seasonally evaluated for one year in bare soils and different vegetated patches within metalliferous mine tailings and surrounding forests in southeast Spain. The results indicated that the improvement in soil conditions (as shown by softening of climatic conditions and lower scores for salinity and water-soluble metals and higher for biological parameters) induced by vegetation colonization was consistent throughout seasons.

View Article and Find Full Text PDF

Global warming is drastically altering the climate conditions of our planet. Soils will be among the most affected components of terrestrial ecosystems, especially in contaminated areas. In this study we investigated if changes in climate conditions (air temperature and soil moisture) affect the toxicity of historically metal(loid)-contaminated soils to the invertebrate Folsomia candida, followed by an assessment of its recovery capacity.

View Article and Find Full Text PDF

Phytomanagement is considered a suitable option in line with nature-based solutions to reduce environmental risks associated to metal(loid) mine tailings. We aimed at assessing the effectiveness of biochar from pruning trees combined with compost from urban solid refuse (USR) to ameliorate the conditions of barren acidic (pH ~5.5) metal(loid) mine tailing soils (total concentrations in mg kg: As ~220, Cd ~40, Mn ~1800, Pb ~5300 and Zn ~8600) from Mediterranean semiarid areas and promote spontaneous plant colonization.

View Article and Find Full Text PDF

Global climate changes are predicted for the 21st century. Alterations in soil contaminants' availability and soil invertebrates' behavior are expected, which may interfere with the avoidance capacity that invertebrates may have towards contaminated soils and, therefore, compromise their role in soil functioning. This study aimed to assess the individual effects of air temperature, ultraviolet (UV) radiation and atmospheric CO concentration on the avoidance behavior of the arthropod Folsomia candida and the soft-bodied oligochaete Enchytraeus crypticus towards metal(loid)-contaminated soils.

View Article and Find Full Text PDF

Water availability is paramount in the response of soil invertebrates towards stress situations. This study aimed to evaluate the effects of forecasted soil moisture scenarios on the avoidance behavior of two invertebrate species (the arthropod Folsomia candida and the soft-bodied oligochaete Enchytraeus crypticus) in soils degraded by different types of anthropogenic metal(loid) contamination (mining soil and agricultural soil affected by industrial chemical wastes). Different soil moisture contents (expressed as % of the soil water holding capacity, WHC) were evaluated: 50% (standard soil moisture conditions for soil invertebrates' tests); 75% (to simulate increasing soil water availability after intense rainfalls and/or floods); 40%, 30%, 25% and 20% (to simulate decreasing soil water availability during droughts).

View Article and Find Full Text PDF

This study aimed to assess the effectiveness of biochar from sewage sludge -BSS- and from pruning trees -BPT- (addition dose of 6% d.w.) to immobilise metals in acidic (pH ∼ 4.

View Article and Find Full Text PDF

This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k) and elimination (k) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k/k.

View Article and Find Full Text PDF

This study aimed at assessing the effects of increased air temperature and reduced soil moisture content on the multi-generation toxicity of a soil polluted by metal/metalloid mining wastes. Enchytraeus crypticus was exposed to dilution series of the polluted soil in Lufa 2.2 soil under different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) over three generations standardized on physiological time.

View Article and Find Full Text PDF

This study aimed to evaluate the response of salt marshes to pulses of PO-enriched water, with and without the presence of Phragmites australis. A one-year mesocosms experiment was performed in simulated soil profiles (fine-textured surface layers and sandy subsurface layers) from a coastal salt marsh of the Mar Menor lagoon under alternating flooding-drying conditions with eutrophic water, under low (1.95 mg L P-PO) and high (19.

View Article and Find Full Text PDF

This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus.

View Article and Find Full Text PDF

Phytomanagement by phytostabilisation of metal(loid)-enriched mine tailings in semiarid areas has been proposed as a suitable technique to promote a self-sustainable vegetal cover for decreasing the spread of polluted particles by erosion. The goal of this work was to evaluate the contribution of a pioneer plant species (Zygophyllum fabago) in ameliorating the soil conditions at two mine tailings piles located in a semiarid area in Southeast Spain. The ecophysiological performance of this plant species compared to a control population was assessed by analysing the nutritional and ecophysiological status.

View Article and Find Full Text PDF

This study aimed at assessing the effects of global warming (increasing air temperature and decreasing soil moisture content) on the bioaccumulation kinetics of As, Cd and Zn in the earthworm Eisenia andrei in two polluted soils (mine tailing and watercourse soil). Earthworms were exposed for up to 21 d under four climate conditions: 20 °C + 50% soil water holding capacity (WHC) (standard conditions), 20 °C + 30% WHC, 25 °C + 50% WHC and 25 °C + 30% WHC. Porewater metal/metalloid availability did not change in the mine tailing soil after the incubation period under the different climate conditions tested.

View Article and Find Full Text PDF

Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E.

View Article and Find Full Text PDF

Phytomanagement in terms of phytostabilisation has been proposed as a suitable technique to decrease the environmental risks of metal(loid) enriched mine tailings. Nevertheless, at these sites some issues must be solved to assure the long-term establishment of vegetation (e.g.

View Article and Find Full Text PDF

The present study aimed to assess the effects of climate change on the toxicity of metal-polluted soils. Bioassays with Enchytraeus crypticus were performed in soils polluted by mine wastes (mine tailing, forest, and watercourse) and under different combinations of temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water-holding capacity). Survival and reproduction were set as endpoints.

View Article and Find Full Text PDF

The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings.

View Article and Find Full Text PDF

The goal of this work was to assess the selection of the most suitable combination of plant species for the phytomanagement of mine tailings, by comparing among different plant life-forms (grasses, shrubs and trees). A comparison on induced rhizosphere changes generated by four plant species (the grass Piptatherum miliaceum, the shrub Helichrysum decumbens, and the trees, Pinus halepensis and Tetraclinis articulata) and high density vegetation patches (fertility islands) at a mine tailing located at Southeast Spain and the description of their physiological status employing stable isotopes analyses were carried out. The edaphic niches for plant growth were determined by salinity, organic matter and total soil nitrogen while metal(loid)s concentrations played a minor role.

View Article and Find Full Text PDF

Wetlands are highly effective systems in removing large amounts of N from waters, preventing eutrophication processes. However, when wetlands are polluted by metal-mine wastes their capacity to act as green filters may be diminished. The objective of this study was to evaluate the effect of liming and plants (Sarcocornia fruticosa and Phragmites australis) on the removal of NO3(-) from eutrophic water in slightly acidic, wetland soils polluted by metal-mine wastes.

View Article and Find Full Text PDF

Phytomanagement in terms of phytostabilisation is considered a suitable method to decrease environmental risks of metal(loid) enriched mine tailings. The goal of this study was to identify plant-favourable edaphic niches in mine tailings from a semiarid area, in order to obtain relevant information for further phytostabilisation procedures. For this purpose, a transect-designed sampling from non-disturbed soils to two mine tailings was performed, including the description of soil and plant ecology gradients.

View Article and Find Full Text PDF