Currently, a wealth of genomic data are now accessible for numerous insect natural enemies, serving as valuable resources that deepen our understanding of the genetic basis of biocontrol traits in these organisms. We summarize the current state of genome sequencing and highlight candidate genes related to biocontrol traits that hold promise for genetic improvement. We also review the recent population genomic studies in biological control and the discovery of potential insecticidal genes in parasitoid wasps.
View Article and Find Full Text PDFParasitoid wasps represent a group of parasitic insects with high species diversity that have played a pivotal role in biological control and evolutionary studies. Over the past 20 years, developments in genomics have greatly enhanced our understanding of the biology of these species. Technological leaps in sequencing have facilitated the improvement of genome quality and quantity, leading to the availability of hundreds of parasitoid wasp genomes.
View Article and Find Full Text PDFBackground: Venoms have repeatedly evolved over 100 occasions throughout the animal tree of life, making them excellent systems for exploring convergent evolutionary novelty. Growing evidence supports that venom evolution is predominantly driven by prey or host-related selection pressures, and the expression patterns of venom glands reflect adaptive evolution. However, it remains elusive whether the evolution of expression patterns in venom glands is likewise a convergent evolution driven by their prey/host species.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have started to play an important role in pest control, and novel miRNA-based transgenic insect-resistant plants are now emerging. However, an environmental risk assessment of these novel transgenic plants expressing insect miRNAs must be undertaken before promoting their application. Here, transgenic miR-14 rice, which has high resistance to the rice stem borer Chilo suppressalis, was used as an example for evaluation in this study.
View Article and Find Full Text PDFBoth parasitoids and entomopathogenic fungi are becoming increasingly crucial for managing pest populations. Therefore, it is essential to carefully consider the potential impact of entomopathogenic fungi on parasitoids due to their widespread pathogenicity and the possible overlap between these biological control tools during field applications. However, despite their importance, little research has been conducted on the pathogenicity of entomopathogenic fungi on parasitoids.
View Article and Find Full Text PDFBackground: The ectoparasitic wasp Habrobracon hebetor (Hymenoptera, Braconidae) can parasitize various species of lepidopteran pests. To maximize its potential for biological control, it is necessary to investigate its gene function through genome engineering.
Results: To test the effectiveness of genome engineering system in H.
Background: Rice dwarf virus (RDV)-induced rice plant volatiles (E)-β-caryophyllene and 2-heptanol modulate the olfactory behavior of RDV insect vectors that promote viral acquisition and transmission. However, it remains elusive whether these two volatiles could influence the behaviors of the natural enemies of RDV insect vectors. Herein, we determined the effects of these two volatiles on the olfactory and predatory behaviors of Cyrtorhinus lividipennis (Hemiptera: Miridae), an important predator of RDV insect vectors in rice paddies.
View Article and Find Full Text PDFAnimal venom systems have emerged as valuable models for investigating how novel polygenic phenotypes may arise from gene evolution by varying molecular mechanisms. However, a significant portion of venom genes produce alternative mRNA isoforms that have not been extensively characterized, hindering a comprehensive understanding of venom biology. In this study, we present a full-length isoform-level profiling workflow integrating multiple RNA sequencing technologies, allowing us to reconstruct a high-resolution transcriptome landscape of venom genes in the parasitoid wasp Our findings demonstrate that more than half of the venom genes generate multiple isoforms within the venom gland.
View Article and Find Full Text PDFInsects employ multifaceted strategies to combat invading fungi, with immunity being a promising mechanism. Immune pathways function in signal transduction and amplification, ultimately leading to the activation of antimicrobial peptides (AMPs). Although several studies have shown that immune pathways are responsible for defending against fungi, the roles of parasitoid immune pathways involved in antifungal responses remain unknown.
View Article and Find Full Text PDFAlternative splicing (AS) is a major source of protein diversity in eukaryotes, but less is known about its evolution compared to gene duplication (GD). How AS and GD interact is also largely understudied. By constructing the evolutionary trajectory of the serpin gene PpSerpin-1 (Pteromalus puparum serpin 1) in parasitoids and other insects, we found that both AS and GD jointly contribute to serpin protein diversity.
View Article and Find Full Text PDFHeat shock proteins, including αB-crystallins (CRYAB), are pivotal in cellular defense mechanisms and stress response. This study presents a comprehensive investigation of heat shock proteins (HSPs), with a specific focus on the CRYAB family, within the genome of . The analysis encompasses the identification of these proteins, exploration of their phylogenetic relationships, examination of conserved domains, and evaluation of their response to high temperature conditions.
View Article and Find Full Text PDFChloride intracellular channel (CLIC) is a member of the chloride channel protein family for which growing evidence supports a pivotal role in fundamental cellular events. However, the physiological function of CLIC in insects is still rarely uncovered. The ovary-derived High Five (Hi-5) cell line isolated from the cabbage looper () is widely used in laboratories.
View Article and Find Full Text PDFMembers of the family are viruses with negative-sense RNA genomes of 6.5-15.5 kb that have mainly been found in arthropods and nematodes.
View Article and Find Full Text PDFStriped stem borer (SSB) is one of the most damaging pests in rice production worldwide. Previously, we preliminarily demonstrated that indica rice Jiazhe LM, an OsT5H (encoding tryptamine-5-hydroxylase) knockout mutant deficient in serotonin, had increased resistance to SSB as compared with its wildtype parent Jiazhe B. However, the full scenario of SSB resistance and the underlying mechanism remain unknown.
View Article and Find Full Text PDFAllergies have become an emerging public health problem worldwide. The most effective way to prevent allergies is to find the causative allergen at the source and avoid re-exposure. However, most of the current computational methods used to identify allergens were based on homology or conventional machine learning methods, which were inefficient and still had room to be improved for the detection of allergens with low homology.
View Article and Find Full Text PDFis a parasitoid wasp capable of infesting many lepidopteran larvae. It uses venom proteins to immobilize host larvae and prevent host larval development, thus playing an important role in the biocontrol of lepidopteran pests. To identify and characterize its venom proteins, we developed a novel venom collection method using an artificial host (ACV), i.
View Article and Find Full Text PDFBackground: Behavior-based manipulation is an essential part of Drosophila integrated pest management (IPM). Effective compounds are useful for improving the efficiency of baits and the development of attract-and-kill or push-pull strategies to manage Drosophila populations. Here, we investigated the olfactory behavior of two Drosophila species, as well as their pupal parasitoid, to volatiles from bananas, for the identification of effective compounds to control fly populations.
View Article and Find Full Text PDFThe linker histone H1 binds to the nucleosome core particle at the site where DNA enters and exits, and facilitates folding of the nucleosomes into a higher-order chromatin structure in eukaryotes. Additionally, some variant H1s promote specialized chromatin functions in cellular processes. Germline-specific H1 variants have been reported in some model species with diverse roles in chromatin structure changes during gametogenesis.
View Article and Find Full Text PDFIdiobiont parasitoids using other insects as hosts sabotage the host growth and development to ensure their offspring survival. Numerous studies have discovered that insect development is subtly regulated by the conserved insulin signaling pathway. However, little is known about how wasp parasitization disrupts host development controlled by the insulin signaling pathway.
View Article and Find Full Text PDFRice dwarf virus (RDV) is transmitted by insect vectors and (Hemiptera: Cicadellidae) that threatens rice yield and results in substantial economic losses. RDV induces two volatiles ((E)-β-caryophyllene (EBC) and 2-heptanol) to emit from RDV-infected rice plants. However, the effects of the two volatiles on the olfactory behavior of both non-viruliferous and viruliferous are unknown, and whether the two volatiles could facilitate the spread and dispersal of RDV remains elusive.
View Article and Find Full Text PDFOctopamine (OA) is structurally and functionally similar to adrenaline/noradrenaline in vertebrates, and OA modulates diverse physiological and behavioral processes in invertebrates. OA exerts its actions by binding to specific octopamine receptors (OARs). Functional and pharmacological characterization of OARs have been investigated in several insects.
View Article and Find Full Text PDF