Publications by authors named "Gongli Xiao"

In this paper, we propose a multi-channel photonic crystal fiber sensor, which adopts dual-polarization and multiple materials to effectively reduce the mutual interference between channels and enhance the surface plasmon resonance, thus achieving simultaneous detection of a multi-channel with low interference. Four channels are polished around the cylindrical fiber, and then different metal films (gold or silver) and plasmonic materials (titanium dioxide, thallium pentoxide, or graphene) are added to the sensing area of each channel. All channels detect refractive indices in the range of 1.

View Article and Find Full Text PDF

Based on graphene's phase modulation property and vanadium dioxide's amplitude modulation property, we developed an array reflector for terahertz frequencies that is individually adjustable. Starting with a theoretical analysis, we look into the effects of voltage on the Fermi level of graphene and temperature on the conductivity of vanadium dioxide, analyze the beam focusing characteristics, and finally link the controllable quantities with the reflected beam characteristics to independently regulate each cell in the array. The simulation findings demonstrate that the suggested array structure can precisely manage the focus point's position, intensity, and scattering degree and that, with phase compensation, it can control the wide-angle incident light.

View Article and Find Full Text PDF

Two-dimensional (2D) materials, which have attracted attention due to intriguing optical properties, form a promising building block in optical and photonic devices. This paper numerically investigates a tunable and anisotropic perfect absorber in a graphene-black phosphorus (BP) nanoblock array structure. The suggested structure exhibits polarization-dependent anisotropic absorption in the mid-infrared, with maximum absorption of 99.

View Article and Find Full Text PDF

Based on coupled-mode theory (CMT) and the finite-difference time-domain (FDTD) approach, we propose a graphene metasurface-based and multifunctional polarization beam splitter that is dynamically tunable. The structure, comprising two graphene strips at the top and bottom and four triangular graphene blocks in the center layer, can achieve triple plasma-induced transparency (PIT). In a single polarization state, the computational results reveal that synchronous or asynchronous six-mode electro-optical switching modulation may be performed by modifying the Fermi levels of graphene, with a maximum modulation degree of amplitude (MDA) of 97.

View Article and Find Full Text PDF

Optical tweezers are key tools to trap and manipulate nanoparticles in a non-invasive way, and have been widely used in the biological and medical fields. We present an integrated multifunctional 2D plasmonic optical tweezer consisting of an array of graphene discs and the substrate circuit. The substrate circuit allows us to apply a bias voltage to configure the Fermi energy of graphene discs independently.

View Article and Find Full Text PDF

We propose a high quality-factor (Q-factor) multi-Fano resonance hybrid metamaterial waveguide (HMW) sensor. By ingeniously designing a metal/dielectric hybrid waveguide structure, we can effectively tailor multi-Fano resonance peaks' reflectance spectrum appearing in the visible wavelength range. In order to balance the high Q-factor and the best Fano resonance modulation depth, numerical calculation results demonstrated that the ultra-narrow linewidth resolution, the single-side quality factor, and Figure of Merit (FOM) can reach 1.

View Article and Find Full Text PDF

Herein, we propose a tunable plasmonic sensor with Fano resonators in an inverted U-shaped resonator. By manipulating the sharp asymmetric Fano resonance peaks, a high-sensitivity refractive index sensor can be realized. Using the multimode interference coupled-mode theory and the finite element method, we numerically simulate the influences of geometrical parameters on the plasmonic sensor.

View Article and Find Full Text PDF

This paper presents a graphene-Au coated photonic crystal fiber (PCF) sensor in the visible regime. Designing a side-polish D-shaped plane over the PCF's defect of the periodic air holes can effectively enhance the evanescent field. Graphene on gold can enhance the sensor's sensitivity because it can stably adsorb biomolecules and increase the propagation constant of the surface plasmon polariton (SPP).

View Article and Find Full Text PDF

In this paper, a multi-parameter integrated detection photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR) is proposed for its application in detecting temperature, magnetic field, and refractive index. The air holes on both sides of the fiber core were coated with gold film and introduced to the temperature-sensitive medium (PDMS) and magnetic fluid (MF), detecting temperature and magnetic field, respectively. The graphene layer is also presented on the gold film of the D-type side polished surface to improve the sensor sensitivity.

View Article and Find Full Text PDF

A deep-subwavelength metal spiral structure (MSS) waveguide with arbitrary bending angles was proposed and demonstrated to propagate magnetic localized surface plasmons (MLSPs) in theoretical, simulated and experimental ways. The uniform coupling strengths and frequencies for adjacent MSSs with different azimuthal angles represent a significant advancement in the development of structures supporting MLSPs over arbitrary bending angles. The consistency among spectra, dispersion, and field distributions for five MSSs indicates that backward propagation of MLSPs over arbitrary bending angles is possible.

View Article and Find Full Text PDF

Asymmetric transmission (AT) is useful for polarization manipulation. We report narrowband AT that utilizes a triple-layered symmetric trimeric metasurface with near-field coupling of the dark mode of the Fano resonance. The coupling strength of the dark mode was tuned by using a mid-layer to break the dim AT between two slit layers.

View Article and Find Full Text PDF

Plasmonic surface lattice resonances (SLRs) supported by metal nanoparticle arrays exhibit narrow linewidths and enhanced localized fields and thus are attractive in diverse applications including nanolasers, biochemical sensors and nonlinear optics. However, it has been shown that these SLRs have much worse performance in a less symmetric environment, hindering their practical applications. Here, we propose a novel type of narrow SLRs that is supported by metal-insulator-metal nanopillar arrays and that has better performance in a less symmetric dielectric environment.

View Article and Find Full Text PDF

A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth.

View Article and Find Full Text PDF

In this paper, we propose a novel multilayer insulation structure in a metal-insulator-metal (MIM) plasmonic waveguide to explore the possibility of increasing surface plasmon polariton (SPP) mode excitation. Numerical investigations show that the effective refractive index of the multilayer insulation structure affects symmetric SPP mode excitation. The significant enhancement of electric field intensity in horizontal and vertical profiles with a dipole in SiO2 compared with in Al2O3 is observed in the proposed MIM plasmonic waveguides due to a combination of the improved optical density and dipole radiation intensities under a low refractive index.

View Article and Find Full Text PDF

The enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays by changing the refractive index and the thickness of a dielectric layer was studied experimentally. The results indicated that the transmission spectra was highly dependent on the refractive index and the thickness of SiO(x)N(y). We found that the transmission peaks redshifted regularly along with the refractive index from 1.

View Article and Find Full Text PDF