Publications by authors named "Gongjuan Wu"

Bismuth oxyiodides have exhibited high potential for applications in visible-light photocatalytic environmental remediation and solar energy conversion. In this work, a series of iodine-deficient bismuth oxyiodides (BiOI, BiOI, BiOI) can be simply prepared through a pH-dependent aqueous procedure with feeding Bi/I ratio of 2:1. The compositions of the Bi-based oxyiodides are closely related to acid-base circumstances, with BiOI formed in weakly acidic medium (pH = 5) and BiOI, BiOI in basic medium (pH = 8 and 11).

View Article and Find Full Text PDF

Nanosheet constructed bismuth microspheres were prepared through an aqueous reduction approach in the presence of CTAB molecules, with initial formed BiOCl as the precursor and hydrazine hydrate as the reductant. The flower-like morphology and platelet units of BiOCl precursor determined the evolution of hierarchical Bi microspheres through a morphology-heredity process. Trisodium citrate was introduced to keep the Bi microspheres from oxidation, the high purity in composition are beneficial to eliminate the influence of bismuth oxides.

View Article and Find Full Text PDF

An aqueous reduction method was reported for the synthesis of bismuth nanowires (Bi NWs) 5-10 nm in diameter and several micrometers in length under the guidance of PVP molecules. The reactions were performed at 80 °C by reducing bismuth chloride with sodium hypophosphite first in acid and then under neutral circumstances. The key to successful preparation of the Bi NWs is regulation of the reduction speed by control of the pH value.

View Article and Find Full Text PDF

Hierarchical Bi based nanobundles were self-assembled via an aqueous reduction approach using hydrazine hydrate as reductive agent, and were used as photocatalysts for the degradation of Rhodamine B (RhB) under visible light. PVP molecules were designed as inducing agent to construct the Bi based nanobundles. The as-obtained samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), thermogravimetric-differential thermal analyzer (TG-DTA), infrared spectroscopy (IR) and field emission scanning electron microscopy (FESEM) to get clear information of the crystals.

View Article and Find Full Text PDF