The sensitivity of fluorescent sensors is crucial for their applications. In this study, we propose a molecularly imprinted polymer (MIP)-coated optical fibre-hybrid waveguide-fibre sensing structure for ultrasensitive fluorescence detection. In such a structure, the MIP coated-hybrid waveguide acts as a sensing probe, and the two co-axially connected optical fibres act as a highly efficient probing light launcher and a fluorescence signal collector, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2022
Ultrahigh sensitivity and selectivity are the ultimate goals of sensor development. For such purposes, we propose a sensing platform in which an optical fiber-waveguide-fiber (OFWF) structure is integrated with a molecularly imprinted polymer (MIP). The OFWF works as a highly efficient probe light launcher and signal light collector, and the MIP layer acts as a highly selective and sensitive sensing interface.
View Article and Find Full Text PDFIn this study, we propose a one-drop self-assembly method, which proved capable of successfully preparing 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) single-crystalline nanowires (NWs). The apparent roughness of the DAST NWs was determined to be less than 100 pm by using a high-resolution atomic force microscope, indicating their ultrafine quality. The DAST NWs also exhibited excellent nonlinear optical properties, including two-photon excited fluorescence and second harmonic generation, which could enable the production of low-cost, low-power-consumption wideband wavelength conversion devices.
View Article and Find Full Text PDFLead halide perovskites are attracting intense research interest due to their high energy conversion efficiency and tunable optoelectronic properties. In this study, we demonstrate an environment-friendly one-drop self-assembly and ion-exchange methods for preparation of CsPbBr perovskite nanowires (NWs). High-quality NWs can be obtained with very small doses of required material.
View Article and Find Full Text PDFAchieving an ultra-broadband range is an essential development direction in terahertz techniques; however, a method to cover the full terahertz band by using a highly efficient antireflection (AR) coating that could greatly increase the efficiency of terahertz radiation is still lacking. It is known that structures possessing a graded-index profile can offer a broadband AR effect, and such structures have been widely used, especially in the visible range. In this paper, first, we tuned the refractive index of a cyclo-olefin polymer (COP) by using a TiO₂ dopant, and a polymer⁻TiO₂ composite with a refractive index of 3.
View Article and Find Full Text PDFAn ultra-broadband perfect absorber based on graded-index mechanism is designed and fabricated. The perfect absorber is comprised of a heavily-doped silicon absorption substrate and a flat six-layer antireflective structure. The refractive index of each layer was widely tuned by hollow polystyrene microsphere and TiO nanoparticle dopants, which can offer a gradually changed refractive index profile from 1.
View Article and Find Full Text PDFTerahertz time-domain spectroscopy (THz-TDS) is used to investigate the absorption spectra of polycrystalline L- and DL-histidine in the frequency range of 10-100 cm. The spectra exhibit distinct differences in peak frequencies between the enantiomer (L-histidine) and racemic compound (DL-histidine). The observed spectral differences are attributed to the intermolecular interactions.
View Article and Find Full Text PDF