Efficient ion transport and enriched responsive modals via modulating electrochemical properties of conductivity and capacitance are essential for soft electro-ionic actuators. However, cost-effective and straightforward approaches to achieve expedited fabrication of active electrode materials capable of multimodal-responsiveness remain limited. Herein, this work reports the one-step ultrafast laser direct patterning method, to readily synthesize electro- and magneto-active electrode material, derived from the unique cobalt-phosphorus co-doped core-shell heterostructures within 3D graphene frameworks, for fulfilling the dual-mode responsive electro-ionic actuators.
View Article and Find Full Text PDFMonitoring high-temperature strain on curved components in harsh environments is a challenge for a wide range of applications, including in aircraft engines, gas turbines, and hypersonic vehicles. Although there are significant improvements in the preparation of high-temperature piezoresistive film on planar surfaces using 3D printing methods, there are still difficulties with poor surface compatibility and high-temperature strain testing on curved surfaces. Herein, a conformal direct ink writing (CDIW) system coupled with an error feedback regulation strategy was used to fabricate high-precision, thick films on curved surfaces.
View Article and Find Full Text PDFA high-temperature thin/thick-film strain gauge (TFSG) shows development prospects for in situ strain monitoring of hot-end components due to their small perturbations, no damage, and fast response. Direct ink writing (DIW) 3D printing is an emerging and facile approach for the rapid fabrication of TFSG. However, TFSGs prepared based on 3D printing with both high thermal stability and low temperature coefficient of resistance (TCR) over a wide temperature range remain a great challenge.
View Article and Find Full Text PDFThin-film sensors are regarded as advanced technologies for in situ condition monitoring of components operating in harsh environments, such as aerospace engines. Nevertheless, these sensors encounter challenges due to the high-temperature oxidation of materials and intricate manufacturing processes. This paper presents a simple method to fabricate high temperature-resistant oxidized SiCN precursor and La(Ca)CrO composite thin film temperature sensors by screen printing and air annealing.
View Article and Find Full Text PDFPolymer-derived ceramic (PDC) thin-film sensors have a very high potential for extreme environments. However, the erosion caused by high-temperature airflow at the hot-end poses a significant challenge to the stability of PDC thin-film sensors. Here, we fabricate a thin-film coating by PDC/TiB/B composite ceramic material, which can be used to enhance the oxidation resistance and ablation resistance of the sensors.
View Article and Find Full Text PDFPolymer-derived ceramic (PDC)-based high-temperature thin-film sensors (HTTFSs) exhibit promising applications in the condition monitoring of critical components in aerospace. However, fabricating PDC-based HTTFS integrated with high-efficiency, high-temperature anti-oxidation, and customized patterns remains challenging. In this work, we introduce a rapid and flexible selecting laser pyrolysis combined with a direct ink writing process to print double-layer high-temperature antioxidant PDC composite thin-film thermistors under ambient conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
In situ temperature monitoring of curved high-temperature components in extreme environments is challenging for a variety of applications in fields such as aero engines and gas turbines. Recently, extrusion-based direct ink writing (DIW) has been utilized to fabricate platinum (Pt) resistance temperature detectors (RTDs). However, the current Pt RTD prepared by DIW technology suffers from a limited temperature range and poor high-temperature stability.
View Article and Find Full Text PDFMicrosyst Nanoeng
September 2022
3D microfluidic devices have emerged as powerful platforms for analytical chemistry, biomedical sensors, and microscale fluid manipulation. 3D printing technology, owing to its structural fabrication flexibility, has drawn extensive attention in the field of 3D microfluidics fabrication. However, the collapse of suspended structures and residues of sacrificial materials greatly restrict the application of this technology, especially for extremely narrow channel fabrication.
View Article and Find Full Text PDFPolymer-derived ceramic (PDC) is considered an excellent sensing material for harsh environments such as aero-engines and nuclear reactors. However, there are many inherent limitations not only in pure PDC but also in its common fabrication method by furnace thermolysis. Therefore, this study proposes a novel method of rapid fabrication of PDC composite thin-film sensors by laser pyrolysis.
View Article and Find Full Text PDFA control chip with a multistage flow-rate regulation function based on the correlation between the flow resistance and flow rate has been developed in this article. Compared with the traditional proportional solenoid valve, this kind of flow valve based on microfluidic technology has the characteristics of being light-weight and having no electric drive. It solves such technical problems as how the current digital microfluidic chip can only adjust the flow switch, and the adjustment of the flow rate is difficult.
View Article and Find Full Text PDFElectrical control toolkits for microlens arrays are available to some extent, but for applications in environments with strong electromagnetic fields, radiation, or deep water, non-electrical actuation and control strategies are more appropriate. An integrated digital microfluidic zoom actuating unit with a logic addressing unit for a built-in membrane lens array, e.g.
View Article and Find Full Text PDFAdvanced dispensing technology is urgently needed to improve the jetting performance of fluid to meet the requirements of electronic product integration and miniaturization. In this work, an on-off valve piezostack-driven dispenser was used as a study object to investigate the effect of needle structure on jetting performance. Based on fluid dynamics, we investigated nozzle cavity pressure and jet velocity during the dispensing process using theoretical simulation for needles with and without a side cap.
View Article and Find Full Text PDFA simple fabrication method of micro/nano-optical fibers (MNOFs) based on near-field melt electrospinning (NMES) is proposed in this Letter. Single fibers with diameters ranging from 500 nm to 6 μm were directly written by near-field electrospinning of molten poly(methyl methacrylate) (PMMA). The morphology and transmission characteristics of single PMMA MNOFs were experimentally measured.
View Article and Find Full Text PDF