Publications by authors named "Gongfa Jiang"

Purpose: Synthetic digital mammogram (SDM) is a 2D image generated from digital breast tomosynthesis (DBT) and used as a substitute for a full-field digital mammogram (FFDM) to reduce the radiation dose for breast cancer screening. The previous deep learning-based method used FFDM images as the ground truth, and trained a single neural network to directly generate SDM images with similar appearances (e.g.

View Article and Find Full Text PDF

Synthetic digital mammography (SDM), a 2D image generated from digital breast tomosynthesis (DBT), is used as a potential substitute for full-field digital mammography (FFDM) in clinic to reduce the radiation dose for breast cancer screening. Previous studies exploited projection geometry and fused projection data and DBT volume, with different post-processing techniques applied on re-projection data which may generate different image appearance compared to FFDM. To alleviate this issue, one possible solution to generate an SDM image is using a learning-based method to model the transformation from the DBT volume to the FFDM image using current DBT/FFDM combo images.

View Article and Find Full Text PDF

White matter hyperintensities (WMH) are commonly found in the brains of healthy elderly individuals and have been associated with various neurological and geriatric disorders. In this paper, we present a study using deep fully convolutional network and ensemble models to automatically detect such WMH using fluid attenuation inversion recovery (FLAIR) and T1 magnetic resonance (MR) scans. The algorithm was evaluated and ranked 1st in the WMH Segmentation Challenge at MICCAI 2017.

View Article and Find Full Text PDF