Aims: There is little information about transmembrane protein 35B (TMEM35B) expression in glioma, and its functions in glioma remains no clue.
Patients & Methods: Immunohistochemistry was used to measure TMEM35B expression levels and CCK8 and Transwell assays were analyzed the proliferative and migratory and invasive.
Results: TMEM35B protein was significantly higher in gliomas and correlated with a higher tumor TNM stages.
IEEE J Biomed Health Inform
September 2024
Clinical studies have proved that both structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) are implicitly associated with neuropsychiatric disorders (NDs), and integrating multi-modal to the binary classification of NDs has been thoroughly explored. However, accurately classifying multiple classes of NDs remains a challenge due to the complexity of disease subclass. In our study, we develop a heterogeneous neural network (H-Net) that integrates sMRI and fMRI modes for classifying multi-class NDs.
View Article and Find Full Text PDFThe COVID-19 pandemic has underscored the urgent need for rapid and accurate diagnosis facilitated by artificial intelligence (AI), particularly in computer-aided diagnosis using medical imaging. However, this context presents two notable challenges: high diagnostic accuracy demand and limited availability of medical data for training AI models. To address these issues, we proposed the implementation of a Masked AutoEncoder (MAE), an innovative self-supervised learning approach, for classifying 2D Chest X-ray images.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2023
Segmenting stroke lesions and assessing the thrombolysis in cerebral infarction (TICI) grade are two important but challenging prerequisites for an auxiliary diagnosis of the stroke. However, most previous studies have focused only on a single one of two tasks, without considering the relation between them. In our study, we propose a simulated quantum mechanics-based joint learning network (SQMLP-net) that simultaneously segments a stroke lesion and assesses the TICI grade.
View Article and Find Full Text PDFThree-dimensional convolutional neural networks (3D CNNs) have been widely applied to analyze Alzheimer's disease (AD) brain images for a better understanding of the disease progress or predicting the conversion from cognitively impaired (CU) or mild cognitive impairment status. It is well-known that training 3D-CNN is computationally expensive and with the potential of overfitting due to the small sample size available in the medical imaging field. Here we proposed a novel 3D-2D approach by converting a 3D brain image to a 2D fused image using a Learnable Weighted Pooling (LWP) method to improve efficient training and maintain comparable model performance.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Deep neural networks (DNNs) are the primary driving force for the current development of medical imaging analysis tools and often provide exciting performance on various tasks. However, such results are usually reported on the overall performance of DNNs, such as the Peak signal-to-noise ratio (PSNR) or mean square error (MSE) for imaging generation tasks. As a black-box, DNNs usually produce a relatively stable performance on the same task across multiple training trials, while the learned feature spaces could be significantly different.
View Article and Find Full Text PDFMulti-modal magnetic resonance imaging (MRI) is widely used for diagnosing brain disease in clinical practice. However, the high-dimensionality of MRI images is challenging when training a convolution neural network. In addition, utilizing multiple MRI modalities jointly is even more challenging.
View Article and Find Full Text PDFThe encoder-decoder-based deep convolutional neural networks (CNNs) have made great improvements in medical image segmentation tasks. However, due to the inherent locality of convolution, CNNs generally are demonstrated to have limitations in obtaining features across layers and long-range features from the medical image. In this study, we develop a local-long range hybrid features network (LLRHNet), which inherits the merits of the iterative aggregation mechanism and the transformer technology, as a medical image segmentation model.
View Article and Find Full Text PDFBackground: Enteral nutrition through feeding tubes serves as the primary method of nutritional supplementation for patients unable to feed themselves. Plain radiographs are routinely used to confirm the position of the Nasoenteric feeding tubes the following insertion and before the commencement of tube feeds. Convolutional neural networks (CNNs) have shown encouraging results in assisting the tube positioning assessment.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Alzheimer's disease (AD) is a devastating neurological disorder primarily affecting the elderly. An estimated 6.2 million Americans age 65 and older are suffering from Alzheimer's dementia today.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Alzheimer's disease (AD) is a non-treatable and non-reversible disease that affects about 6% of people who are 65 and older. Brain magnetic resonance imaging (MRI) is a pseudo-3D imaging technology that is widely used for AD diagnosis. Convolutional neural networks with 3D kernels (3D CNNs) are often the default choice for deep learning based MRI analysis.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
April 2022
A key challenge in training neural networks for a given medical imaging task is the difficulty of obtaining a sufficient number of manually labeled examples. In contrast, textual imaging reports are often readily available in medical records and contain rich but unstructured interpretations written by experts as part of standard clinical practice. We propose using these textual reports as a form of weak supervision to improve the image interpretation performance of a neural network without requiring additional manually labeled examples.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
The use of deep learning methods has dramatically increased the state-of-the-art performance in image object localization. However, commonly used supervised learning methods require large training datasets with pixel-level or bounding box annotations. Obtaining such fine-grained annotations is extremely costly, especially in the medical imaging domain.
View Article and Find Full Text PDFWe propose to apply a 2D CNN architecture to 3D MRI image Alzheimer's disease classification. Training a 3D convolutional neural network (CNN) is time-consuming and computationally expensive. We make use of approximate rank pooling to transform the 3D MRI image volume into a 2D image to use as input to a 2D CNN.
View Article and Find Full Text PDFClinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer's disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD.
View Article and Find Full Text PDFObjectives: Performance of recently developed deep learning models for image classification surpasses that of radiologists. However, there are questions about model performance consistency and generalization in unseen external data. The purpose of this study is to determine whether the high performance of deep learning on mammograms can be transferred to external data with a different data distribution.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease whose common manifestation involves the slow destruction of joint tissue, a damage that is visible in a radiograph. Over time, this damage causes pain and loss of functioning, which depends, to some extent, on the spatial deformation induced by the joint damage. Building an accurate model of the current deformation and predicting potential future deformations are the important components of treatment planning.
View Article and Find Full Text PDF