Publications by authors named "GongPing Liang"

Epigenetic modifications affect the differentiation of T cell subsets and the pathogenesis of autoimmune diseases, but many mechanisms of epigenetic regulation of T cell differentiation are unclear. Here we show reduced expression of the transcription factor RFX1 in CD4 T cells from patients with systemic lupus erythematosus, which leads to IL-17A overexpression through increased histone H3 acetylation and decreased DNA methylation and H3K9 tri-methylation. Conditional deletion of Rfx1 in mice exacerbates experimental autoimmune encephalomyelitis and pristane-induced lupus-like syndrome and increases induction of Th17 cells.

View Article and Find Full Text PDF

Age-related variations in genes and microRNAs expression and DNA methylation have been reported respectively; however, their interactions during aging are unclear. We therefore investigated alterations in the transcriptomes, miRNAomes and DNA methylomes in the same CD4T cells from newborn (NB), middle-aged (MA) and long-lived (LL) individuals to elucidate the molecular changes and their interactions. A total 659 genes showed significantly expression changes across NB, MA and LL individuals, in which we identified four age-related co-expression modules with three hub networks of co-expressed genes and non-coding RNAs.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease involving multiple organs and characterized by overproduction of autoantibodies and T and B cell abnormalities. The treatment for SLE has been restricted to immunosuppressants and corticosteroids. Mycophenolate mofetil (MMF), as a relatively new immunosuppressant, is now widely used in the treatment of SLE patients, particularly those with nephritis.

View Article and Find Full Text PDF

Background: The pathogenesis of systemic lupus erythematosus (SLE) has not yet been completely elucidated. One of the hallmarks of SLE is the production of autoantibodies by uncontrolled over-activated B cells. Early B cell factor 1 (EBF1) contributes to the development, activation, and proliferation of B cells through activation of the AKT signaling pathway.

View Article and Find Full Text PDF

Immune dysregulation is a cardinal feature of autoimmune diseases and chronic microbial infections. In particular, regulatory T cells are downregulated in autoimmune diseases while upregulated in chronic microbial infections. FOXP3 is the master regulator of Treg development.

View Article and Find Full Text PDF
Article Synopsis
  • Psoriasis vulgaris (PV) is a chronic autoimmune skin disease characterized by immune dysfunction, particularly involving T cells.
  • The study found that there is increased expression of the microRNA miR-210 in CD4(+) T cells from PV patients, which negatively affects the expression of FOXP3, a key gene for regulatory T cell function.
  • Inhibiting miR-210 can enhance FOXP3 expression and potentially restore normal immune function in T cells from PV patients, suggesting miR-210 plays a crucial role in the disease's immunity-related issues.
View Article and Find Full Text PDF

The aberrant activity of CD4(+) T cells in patients with systemic lupus erythematosus (SLE) is associated with DNA hypomethylation of the regulatory regions in CD11a and CD70 genes. Our previous studies demonstrated that Gadd45a contributes to the development of SLE by promoting DNA demethylation in CD4(+) T cells. In this study, we identified proteins that bind to Gadd45a in CD4(+) T cells during SLE flare by using the method of co-immunoprecipitation and mass spectrometry, High mobility group box protein 1 (HMGB1) is one of identified proteins.

View Article and Find Full Text PDF

Objective: To explore the mechanisms by which DNA methylation regulates miR-126 and its host gene EGFL7 in CD4+ T cells from patients with systemic lupus erythematosus (SLE).

Methods: We analyzed the expression and the DNA methylation status within promoter region of EGFL7 and miR-126 by real-time qPCR and bisulfite genomic sequencing analysis.

Results: miR-126 and EGFL7 mRNA expression was upregulated in CD4+ T cells from SLE compared with that from healthy controls (P<0.

View Article and Find Full Text PDF

Objectives: To investigate alterations in histone modifications in B cells and their role in the pathogenesis of systemic sclerosis (SSc).

Methods: Global histone H3/H4 acetylation and H3K4/H3K9 methylation in B cells of SSc were tested by EpiQuik™ assay kits. Related histone modifier enzymes were measured by RT-PCR and Western blot.

View Article and Find Full Text PDF

Objective: To construct a special luciferase reporter to detect DNA methylation regulatory activity in FCER1G gene promoter regulatory element.

Methods: We constructed special full and mock methylated FCER1G gene promoter regulatory luciferase reporters by patch-methylation, and detected DNA methylation regulatory activity by comparing the luciferase activity of full-methylated luciferase reporters with mock-methylated reporters.

Results: We successfully constructed the full and mock methylated FCER1G gene promoter regulatory luciferase reporters.

View Article and Find Full Text PDF

Psoriasis, a chronic inflammatory skin disorder, is characterized by aberrant keratinocyte proliferation and differentiation in the epidermis. Although the pathogenesis of psoriasis is still incompletely understood, both genetic susceptibilities and environmental triggers are known to act as key players in its development. Several studies have suggested that DNA methylation is involved in the pathogenesis of psoriasis.

View Article and Find Full Text PDF

Henoch-Schönlein purpura (HSP), the most common type of leukocytoclastic vasculitis, is caused by T cell-mediated autoimmune reactions. In this study, we analyze histone modification patterns in peripheral blood mononuclear cells (PBMCs) of HSP patients, and investigate the expression levels of inflammatory cytokines (IFN-γ, IL-2, IL-4, IL-6 and IL-13), transcription factors (T-bet, GATA-3 and TIM-1) and chemokines (CXCL4 and CXCL10) in HSP patients. Our results show that histone H3 acetylation and methylation are significantly enhanced in PBMCs from HSP patients.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a prototype autoimmune disease characterized by various immunological abnormalities, including dysregulated activation of T and B lymphocytes, which trigger autoantibody production and immune-complex deposition. E4BP4, also known as NFIL3, has emerged as a major transcription factor that regulates the development and function of immune cells in a number of lineages. E4BP4 has been shown to regulate cytokines expression, and its synthesis is in turn controlled by various cytokines.

View Article and Find Full Text PDF

Objective: To investigate the effect of total glucosides of peony (TGP) on expression and DNA methylation status of ITGAL gene (CD11a) in CD4(+) T cells from patients with systemic lupus erythematosus (SLE).

Methods: CD4(+) T cells were isolated by positive selection using CD4 beads. CD4(+) T cells were treated by TGP at 0, 62.

View Article and Find Full Text PDF

Objective: To examine the role of microRNA-142-3p/5p (miR-142-3p/5p) in the development of autoimmunity in patients with systemic lupus erythematosus (SLE).

Methods: MicroRNA-142-3p/5p expression levels were determined by real-time quantitative polymerase chain reaction, and potential target genes were verified using luciferase reporter gene assays. The effects of miR-142-3p/5p on T cell function were assessed by transfection with miR-142-3p/5p inhibitors or mimics.

View Article and Find Full Text PDF

Total glucosides of paeony (TGP), an active compound extracted from Paeony root, has been used in therapy for autoimmune diseases. However the molecular mechanism of TGP in the prevention of autoimmune response remains unclear. In this study, we found that TGP treatment significantly increased the percentage and number of Treg cells in lupus CD4(+) T cells.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by T cell overactivation and B cell hyper-stimulation. Hematopoietic progenitor kinase 1 (HPK1, also called MAP4K1) negatively regulates T cell-mediated immune responses. However, the role of HPK1 and the mechanisms that regulate HPK1 expression in SLE remain poorly understood.

View Article and Find Full Text PDF

Aberrant DNA methylation in T cells has been linked to pathogenesis of autoimmune diseases. To investigate genomic and gene-specific DNA methylation levels in CD4(+) T cells from patients with latent autoimmune diabetes in adults (LADA), and to investigate changes in the expression of genes that regulate methylation as well as the autoimmune-related gene FOXP3 in these patients. Global CD4(+) T cell DNA methylation was measured in 15 LADA patients and 11 healthy controls using a methylation quantification kit.

View Article and Find Full Text PDF

Introduction: Regulatory factor X-box 1 (RFX1) can interact with DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1), and RFX1 down-regulation contributes to DNA hypomethylation and histone H3 hyperacetylation at the cluster of differentiation (CD) 11a and CD70 promoters in CD4(+) T cells of patients with systemic lupus erythematosus (SLE). This leads to CD11a and CD70 overexpression, thereby triggering autoimmune responses. In order to provide more insight into the epigenetic mechanisms leading to the deregulation of autoimmune-related genes in SLE, we asked whether RFX1 is involved in regulating histone 3 lysine 9 (H3K9) tri-methylation at the CD11a and CD70 promoters in SLE CD4(+) T cells.

View Article and Find Full Text PDF